10,342 research outputs found
Operationalizing the circular city model for naples' city-port: A hybrid development strategy
The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies
Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale
We report on the observation of Bloch oscillations on the unprecedented time
scale of severalseconds. The experiment is carried out with ultra-cold bosonic
strontium-88 loaded into a vertical optical standing wave. The negligible
atom-atom elastic cross section and the absence of spin makes Sr an
almost ideal Bose gas insensitive to typical mechanisms of decoherence due to
thermalization and to external stray fields. The small size enables precision
measurements of forces at micrometer scale. This is a challenge in physics for
studies of surfaces, Casimir effects, and searches for deviations from
Newtonian gravity predicted by theories beyond the standard model
Coherent control of quantum transport: modulation-enhanced phase detection and band spectroscopy
Amplitude modulation of a tilted optical lattice can be used to steer the
quantum transport of matter wave packets in a very flexible way. This allows
the experimental study of the phase sensitivity in a multimode interferometer
based on delocalization-enhanced Bloch oscillations and to probe the band
structure modified by a constant force.Comment: 8 pages, 3 figures, Submitted to EPJ Special Topics for the special
issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases
Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter
We report on a high precision measurement of gravitational acceleration using
ultracold strontium atoms trapped in a vertical optical lattice. Using
amplitude modulation of the lattice intensity, an uncertainty was reached by measuring at the 5 harmonic of the Bloch
oscillation frequency. After a careful analysis of systematic effects, the
value obtained with this microscopic quantum system is consistent with the one
we measured with a classical absolute gravimeter at the same location. This
result is of relevance for the recent interpretation of related experiments as
tests of gravitational redshift and opens the way to new tests of gravity at
micrometer scale.Comment: 4 pages, 4 figure
Effect of turbulence on electron cyclotron current drive and heating in ITER
Non-linear local electromagnetic gyrokinetic turbulence simulations of the
ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The
turbulent transport is examined in regions of velocity space characteristic of
electrons heated by electron cyclotron waves. Electromagnetic fluctuations and
sub-dominant micro-tearing modes are found to contribute significantly to the
transport of the accelerated electrons, even though they have only a small
impact on the transport of the bulk species. The particle diffusivity for
resonant passing electrons is found to be less than 0.15 m^2/s, and their heat
conductivity is found to be less than 2 m^2/s. Implications for the broadening
of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio
Test of Einstein Equivalence Principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects
We report on a conceptually new test of the equivalence principle performed
by measuring the acceleration in Earth's gravity field of two isotopes of
strontium atoms, namely, the bosonic Sr isotope which has no spin vs the
fermionic Sr isotope which has a half-integer spin. The effect of
gravity upon the two atomic species has been probed by means of a precision
differential measurement of the Bloch frequency for the two atomic matter waves
in a vertical optical lattice. We obtain the values for the E\"otv\"os parameter and
for the coupling between nuclear spin and gravity.
This is the first reported experimental test of the equivalence principle for
bosonic and fermionic particles and opens a new way to the search for the
predicted spin-gravity coupling effects.Comment: 5 pages, 4 figures. New spin-gravtity coupling analysis on the data
added to the manuscrip
Cooling of Sr to high phase-space density by laser and sympathetic cooling in isotopic mixtures
Based on an experimental study of two-body and three-body collisions in
ultracold strontium samples, a novel optical-sympathetic cooling method in
isotopic mixtures is demonstrated. Without evaporative cooling, a phase-space
density of is obtained with a high spatial density that should
allow to overcome the difficulties encountered so far to reach quantum
degeneracy for Sr atoms.Comment: 5 pages, 4 figure
- …