62 research outputs found

    Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion

    Full text link
    © Author(s) 2015. Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires

    Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    Full text link
    © 2016, Nature Publishing Group. All rights reserved. Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon

    Exploring the properties of pyrogenic carbon with solid state <sup>13</sup>C nuclear magnetic resonant spectroscopy: A combustion wind tunnel study

    Full text link
    © Asia-Pacific Conference on Combustion, ASPACC 2019.All right reserved. Increasing the production of aryl carbon from wildland fire may be beneficial since it can be stored in soils for long periods of time rather than being emitted to the atmosphere or stored in soils in a less recalcitrant form. In this study, solid state 13C nuclear magnetic resonant spectroscopy is used to explore the properties of pyrogenic carbon produced by fires burning with different fire spread modes. Forest litter fuels were burnt using in a combustion wind tunnel using a replicated experimental design. Experiments were performed with three different fire spread modes, involving heading fires that spread with the wind, backing fires that spread against the wind and flanking fires that spread perpendicular to the wind. Results show that heading fires produce significantly more aryl carbon than flanking fires. Analysis of the results with principal component analysis show that maximising the residence time of high temperature combustion and the combustion factor could be an effective method for increasing the production of aryl carbon from fire

    Partial pulmonary embolization disrupts alveolarization in fetal sheep

    Get PDF
    BACKGROUND: Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. METHODS: Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA). Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1 alpha abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-R alpha mRNA levels were measured using real-time PCR. RESULTS: At 130d GA (term approximately 147d), in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 +/- 1% in controls to 35 +/- 1% in 1d PPE and 44 +/- 1% in 5d PPE fetuses (p < 0.001). Secondary septal crest density was reduced from 8 +/- 0% in controls to 5 +/- 0% in 1d PPE and 4 +/- 0% in 5d PPE fetuses (p < 0.05), indicating impaired alveolar formation. The deposition of differentiated myofibroblasts (23 +/- 1% vs 28 +/- 1%; p < 0.001) and elastin fibres (3 +/- 0% vs 4 +/- 0%; p < 0.05) were also impaired in embolized lung regions of PPE fetuses compared to controls. PPE did not alter the deposition of collagen or PECAM1. At 116d GA in 5d PPE fetuses, markers of hypoxia indicated that a small and transient hypoxic event had occurred (hypoxia in 6.7 +/- 1.4% of the tissue within embolized regions of 5d PPE fetuses at 116d compared to 0.8 +/- 0.2% of tissue in control regions). There was no change in the proportion of tissue labelled with HIF1 alpha. There was no change in mRNA levels of the angiogenic factors VEGF and Flk-1, although a small increase in PDGF-R alpha expression at 116d GA, from 1.00 +/- 0.12 in control fetuses to 1.61 +/- 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. CONCLUSIONS: PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation

    A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging

    Get PDF
    BACKGROUND: Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. METHODS: The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. FINDINGS: The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. CONCLUSION: Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings

    Ovine Fetal Thymus Response to Lipopolysaccharide-Induced Chorioamnionitis and Antenatal Corticosteroids

    Get PDF
    RATIONALE: Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. METHODS: Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. RESULTS: Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. CONCLUSION: Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus

    Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques — which can provide minimally invasive or noninvasive alternatives to biopsy — could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care

    Exploring the properties of pyrogenic carbon with solid state <sup>13</sup>C nuclear magnetic resonant spectroscopy: A combustion wind tunnel study

    Full text link
    © Asia-Pacific Conference on Combustion, ASPACC 2019.All right reserved. Increasing the production of aryl carbon from wildland fire may be beneficial since it can be stored in soils for long periods of time rather than being emitted to the atmosphere or stored in soils in a less recalcitrant form. In this study, solid state 13C nuclear magnetic resonant spectroscopy is used to explore the properties of pyrogenic carbon produced by fires burning with different fire spread modes. Forest litter fuels were burnt using in a combustion wind tunnel using a replicated experimental design. Experiments were performed with three different fire spread modes, involving heading fires that spread with the wind, backing fires that spread against the wind and flanking fires that spread perpendicular to the wind. Results show that heading fires produce significantly more aryl carbon than flanking fires. Analysis of the results with principal component analysis show that maximising the residence time of high temperature combustion and the combustion factor could be an effective method for increasing the production of aryl carbon from fire
    • …
    corecore