41 research outputs found

    Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy

    Get PDF
    Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics

    Cromatografía en columna como método para la eliminación de componentes menores del aceite de colza

    Get PDF
    The purpose of this study was to verify the influence of different chromatographic column beds (silicic acid, activated charcoal, aluminum oxide, silica gel) on the concentration of individual minor components (sterols, tocopherols, carotenoids and chlorophyll) in rapeseed oil. With the use of a combination of these beds, a three-stage optimized method for removing minor components from rapeseed oil was developed. It was demonstrated that the combination of silicic acid and activated charcoal removed about half of the sterols present from the oil. Aluminum oxide turned out to be the most effective bed in removing tocopherols, purifying the oil to their minimum level (2.6 mg/kg). All adsorbents used had similar capacity to purify oil from pigments (carotenoids and chlorophyll). In the three-stage purification process free sterols were almost completely removed (to the level 90.0 mg/kg). Purification of β-carotene and chlorophyll from the oil was also very effective. Tocopherols were completely removed with this method, except for a small amount of α-tocopherol (0.4 mg/kg), which results from its relatively weak interaction with a hydrophilic bed. The developed method may be used in studies on the effect of association colloids on bulk oil autoxidation processes.El propósito de este estudio fue verificar la influencia de diferentes rellenos de columnas cromatográficas (ácido silícico, carbón activo, óxido de aluminio, gel de sílice) sobre la concentración de componentes menores individuales (esteroles, tocoferoles, carotenoides y clorofila) en aceite de colza. Gracias a esto, se desarrolló un método optimizado de tres etapas para eliminar los componentes secundarios del aceite de colza (utilizando una combinación de todos los rellenos descritos anteriormente). Se ha demostrado que con la combinación de ácido silícico y carbón activo se elimina del aceite alrededor de la mitad de los esteroles presentes. El óxido de aluminio resultó ser el relleno más eficaz para eliminar los tocoferoles, purificando el aceite hasta su nivel mínimo (2,6 mg/kg). Todos los adsorbentes utilizados tenían una capacidad similar para purificar el aceite de pigmentos (carotenoides y clorofila). En el proceso de purificación en tres etapas, los esteroles libres se eliminaron casi por completo (hasta el nivel de 90,0 mg/kg). La purificación de aceite de β-caroteno y clorofila también fue muy efectiva. En este método, los tocoferoles se eliminaron completamente, excepto pequeñas cantidades de α-tocoferol (0,4 mg/kg), lo que resulta de su interacción relativamente débil con un relleno hidrófilo. El método desarrollado se puede usar en los estudios sobre el efecto de los coloides de asociación en los procesos de autooxidación de aceites a granel

    SLC7A11 Overexpression in Glioblastoma Is Associated with Increased Cancer Stem Cell-Like Properties

    Get PDF
    System x_c^− is a sodium-independent electroneutral transporter, comprising a catalytic subunit xCT (SLC7A11), which is involved in importing cystine. Certain cancers such as gliomas upregulate the expression of system x_c^−, which confers a survival advantage against the detrimental effects of reactive oxygen species (ROS) by increasing generation of the antioxidant glutathione. However, ROS have also been shown to function as targeted, intracellular second messengers in an array of physiological processes such as proliferation. Several studies have implicated ROS in important cancer features such as migration, invasion, and contribution to a cancer stem cell (CSC)-like phenotype. The role of system x_c^− in regulating these ROS-sensitive processes in glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor in adults, remains unknown. Stable SLC7A11 knockdown and overexpressing U251 glioma cells were generated and characterized to understand the role of redox and system x_c^− in glioma progression. SLC7A11 knockdown resulted in higher endogenous ROS levels and enhanced invasive properties. On the contrary, overexpression of SLC7A11 resulted in decreased endogenous ROS levels as well as decreased migration and invasion. However, SLC7A11-overexpressing cells displayed actin cytoskeleton changes reminiscent of epithelial-like cells and exhibited an increased CSC-like phenotype. The enhanced CSC-like phenotype may contribute to increased chemoresistance and suggests that overexpression of SLC7A11 in the context of GBM may contribute to tumor progression. These findings have important implications for cancer management where targeting system x_C^− in combination with other chemotherapeutics can reduce cancer resistance and recurrence and improve GBM patient survival

    Increased Expression of System x_c^- in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance

    Get PDF
    Glioblastoma multiforme is the most aggressive malignant primary brain tumor in adults. Several studies have shown that glioma cells upregulate the expression of xCT (SLC7A11), the catalytic subunit of system x_c^-, a transporter involved in cysteine import, that modulates glutathione production and glioma growth. However, the role of system x_c^- in regulating the sensitivity of glioma cells to chemotherapy is currently debated. Inhibiting system x_c^- with sulfasalazine decreased glioma growth and survival via redox modulation, and use of the chemotherapeutic agent temozolomide together with sulfasalazine had a synergistic effect on cell killing. To better understand the functional consequences of system x_c^- in glioma, stable SLC7A11-knockdown and -overexpressing U251 glioma cells were generated. Modulation of SLC7A11 did not alter cellar proliferation but overexpression did increase anchorage-independent cell growth. Knockdown of SLC7A11 increased basal reactive oxygen species (ROS) and decreased glutathione generation resulting in increased cell death under oxidative and genotoxic stress. Overexpression of SLC7A11 resulted in increased resistance to oxidative stress and decreased chemosensitivity to temozolomide. In addition, SLC7A11 overexpression was associated with altered cellular metabolism including increased mitochondrial biogenesis, oxidative phosphorylation, and ATP generation. These results suggest that expression of SLC7A11 in the context of glioma contributes to tumorigenesis, tumor progression, and resistance to standard chemotherapy

    Cyclodextrin modulation of gallic acid in vitro antibacterial activity

    Get PDF
    The substitution of large spectrum antibiotics for natural bioactive molecules (especially polyphenolics) for the treatment of wound infections has come into prominence in the pharmaceutical industry. However, the use of such molecules depends on their stability during environmental stress and on their ability to reach the action site without losing biological properties. The application of cyclodextrins as a vehicle for polyphenolics protection has been documented and appears to enhance the properties of bioactive molecules. Therefore, the encapsulation of gallic acid, an antibacterial agent with low stability, by -cyclodextrin, (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin, was investigated. Encapsulation by -cyclodextrin was confirmed for pH 3 and 5, with similar stability parameters. The (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin interactions with gallic acid were only confirmed at pH 3. Among the three cyclodextrins, better gallic acid encapsulation were observed for (2-hydroxy) propyl--cyclodextrin, followed by -cyclodextrin and methyl--cyclodextrin. The effect of cyclodextrin encapsulation on the gallic acid antibacterial activity was also analysed. The antibacterial activity of the inclusion complexes was investigated here for the first time. According to the results, encapsulation of gallic acid by (2-hydroxy) propyl--cyclodextrin seems to be a viable option for the treatment of skin and soft tissue infections, since this inclusion complex has good stability and antibacterial activity.The authors are grateful for the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the "Programa Operacional Regional do Norte" (ON.2-O Novo Norte), QREN, FEDER. The authors also acknowledge the project "Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462. This work is, also, funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and National Funds through FCT-Foundation for Science and Technology under the project PEst-C/CTM/UI0264/2011. Additionally, the authors would like to thank the FCT for the grant for E. Pinho (SFRH/BD/62665/2009)

    Applying quantum dots to determine food components and contaminants

    No full text
    Kropki kwantowe (QD) są półprzewodnikowymi nanostrukturami o średnicy 1 ÷ 100 nm, zdolnymi do fotoluminescencji. W roztworach oddziaływania pomiędzy atomami na powierzchni kropki kwantowej i otaczającymi je cząsteczkami mogą w istotny sposób wpływać na fotoluminescencje QD. Właściwość ta jest podstawą wykorzystania kropek kwantowych w analityce. Często stosuje się modyfikacje kropek kwantowych poprzez powlekanie ich powierzchni związkami zdolnymi do oddziaływania z analitem. Zastosowanie kropek kwantowych umożliwia opracowania nowych, czułych, selektywnych i szybkich metod analitycznych. W pracy przedstawiono metody oznaczania sacharydów, peptydów i białek, kwasu askorbinowego, związków fenolowych oraz zanieczyszczeń żywności i substancji niepożądanych. Opisano także szereg mechanizmów oddziaływania kropek kwantowych z oznaczanymi substancjami.Quantum dots (QD) are semiconductor nanostructures of a diameter between 1 and 100 nm, capable of photoluminescence. In solutions, interactions occurring between the atoms on the surface of a quantum dot and the neighbouring molecules can significantly affect the photoluminescence of QD. Owing to this characteristic, quantum dots are utilized in analytical methods. Modified quantum dots are often used; their modification consists in coating their surface using molecules capable of interacting with an analyte. The use of quantum dots makes it possible to develop novel, sensitive, selective, and quick analytical methods. In the paper, some methods are described, which are used to determine saccharides, peptides, proteins, ascorbic acid, phenolic compounds, food contaminants, and undesirable substances. Furthermore, some mechanisms are depicted of the interaction between quantum dots and an analyte
    corecore