25 research outputs found

    Development of advanced inductive scenarios for ITER

    Get PDF
    Since its inception in 2002, the International Tokamak Physics Activity topical group on Integrated Operational Scenarios (IOS) has coordinated experimental and modelling activity on the development of advanced inductive scenarios for applications in the ITER tokamak. The physics basis and the prospects for applications in ITER have been advanced significantly during that time, especially with respect to experimental results. The principal findings of this research activity are as follows. Inductive scenarios capable of higher normalized pressure (beta(N)&gt;= 2.4) than the ITER baseline scenario (beta(N) = 1.8) with normalized confinement at or above the standard H-mode scaling are well established under stationary conditions on the four largest diverted tokamaks (AUG, DIII-D, JET, JT-60U), demonstrated in a database of more than 500 plasmas from these tokamaks analysed here. The parameter range where high performance is achieved is broad in q(95) and density normalized to the empirical density limit. MHD modes can play a key role in reaching stationary high performance, but also define the limits to achieved stability and confinement. Projection of performance in ITER from existing experiments uses empirical scalings and theory-based modelling. The status of the experimental validation of both approaches is summarized here. The database shows significant variation in the energy confinement normalized to standard H-mode confinement scalings, indicating the possible influence of additional physics variables absent from the scalings. Tests using the available information on rotation and the ratio of the electron and ion temperatures indicate neither of these variables in isolation can explain the variation in normalized confinement observed. Trends in the normalized confinement with the two dimensionless parameters that vary most from present-day experiments to ITER, gyroradius and collision frequency, are significant. Regression analysis on the multi-tokamak database has been performed, but it appears that the database is not conditioned sufficiently well to yield a new scaling for this type of plasma. Coordinated experiments on size scaling using the dimensionless parameter scaling approach find a weaker scaling with normalized gyroradius than the standard H-mode scaling. Preliminary studies on scaling with collision frequency show a favourable scaling stronger than the standard H-mode scaling. Coordinated modelling activity has resulted in successful benchmarking of modelling codes in the ITER regime. Validation of transport models using these codes on present-day experiments is in progress, but no single model has been shown to capture the variations seen in the experiments. However, projection to ITER using these models is in general agreement with the favourable projections found with the empirical scalings.</p

    On Benchmarking of Simulations of Particle Transport in ITER

    No full text
    We report ITPA IOS Topical Group activity on benchmarking of simulations of core particle transport in ITER baseline ELMy H-mode scenario. Firstly, benchmark is carried out with identical prescribed particle sources, sinks, transport coefficients, and boundary conditions in flattop H-mode phase. The differences between the integrated codes are identified. The transformation of particle transport equation is introduced to make possible a direct comparison of ion and electron solvers. Secondly, pellet fuelling models are benchmarked in various conditions to evaluate the dependency of pellet deposition profile on the pellet volume, injection side, pedestal parameters, and separatrix parameters.26th IAEA Fusion Energy Conferenc

    On Benchmarking of Simulations of Particle Transport in ITER

    No full text
    We report ITPA IOS Topical Group activity on benchmarking of simulations of core particle transport in ITER baseline ELMy H-mode scenario. Firstly, benchmark is carried out with identical prescribed particle sources, sinks, transport coefficients, and boundary conditions in flattop H-mode phase. The differences between the integrated codes are identified. The transformation of particle transport equation is introduced to make possible a direct comparison of ion and electron solvers. Secondly, pellet fuelling models are benchmarked in various conditions to evaluate the dependency of pellet deposition profile on the pellet volume, injection side, pedestal parameters, and separatrix parameters

    On benchmarking of simulations of particle transport in ITER

    No full text
    We report results of benchmarking of core particle transport simulations by a collection of codes widely used in transport modelling of tokamak plasmas. Our analysis includes formulation of transport equations, difference between electron and ion solvers, comparison of modules of the pellet and edge gas fuelling on the ITER baseline scenario. During the first phase of benchmarking we address the particle transport effects in the stationary phase. Firstly, simulations are performed with identical sources, sinks, transport coefficients, and boundary conditions prescribed in the flattop H-mode phase. The transformation of ion particle transport equations is introduced so to directly compare their results to electron transport solvers. Secondly, the pellet fuelling models are benchmarked in various conditions to evaluate the dependency of the pellet deposition on the pellet volume, injection side, pedestal, and separatrix parameters. Thirdly, edge gas fuelling is benchmarked to assess sensitivities of source profile predictions to uncertainties in plasma conditions and detailed model assumptions. At the second phase, we address particle transport effects in the timeevolving plasma including the current ramp-up to the ramp-down phase. The ion and the electron solvers are benchmarked together. Differences between the simulation results of the solvers are investigated in terms of equilibrium, grid resolution, radial coordinate, radial grid distribution, and plasma volume evolution term. We found that the selection of the radial coordinate can yield prominent differences between the solvers mainly due to differences in the edge grid distribution. The simulations reveal that electron and ion solvers predict noticeably different density peaking for the same diffusion and pinch velocity while with the peaked profile of helium, expected in fusion reactors. The fuelling benchmarking shows that gas puffing is not efficient for core fuelling in H-modes and density control should be done by the high field side pellet injection in contrast to present machines

    On benchmarking of simulations of particle transport in ITER

    No full text
    We report results of benchmarking of core particle transport simulations by a collection of codes widely used in transport modelling of tokamak plasmas. Our analysis includes formulation of transport equations, difference between electron and ion solvers, comparison of modules of the pellet and edge gas fuelling on the ITER baseline scenario. During the first phase of benchmarking we address the particle transport effects in the stationary phase. Firstly, simulations are performed with identical sources, sinks, transport coefficients, and boundary conditions prescribed in the flattop H-mode phase. The transformation of ion particle transport equations is introduced so to directly compare their results to electron transport solvers. Secondly, the pellet fuelling models are benchmarked in various conditions to evaluate the dependency of the pellet deposition on the pellet volume, injection side, pedestal, and separatrix parameters. Thirdly, edge gas fuelling is benchmarked to assess sensitivities of source profile predictions to uncertainties in plasma conditions and detailed model assumptions. At the second phase, we address particle transport effects in the time- evolving plasma including the current ramp-up to the ramp-down phase. The ion and the electron solvers are benchmarked together. Differences between the simulation results of the solvers are investigated in terms of equilibrium, grid resolution, radial coordinate, radial grid distribution, and plasma volume evolution term. We found that the selection of the radial coordinate can yield prominent differences between the solvers mainly due to differences in the edge grid distribution. The simulations reveal that electron and ion solvers predict noticeably different density peaking for the same diffusion and pinch velocity while with the peaked profile of helium, expected in fusion reactors. The fuelling benchmarking shows that gas puffing is not efficient for core fuelling in H-modes and density control should be done by the high field side pellet injection in contrast to present machines
    corecore