35 research outputs found

    Chloride Ingress of Carbonated Blast Furnace Slag Cement Mortars

    Full text link
    In the Netherlands civil engineering structures, such as overpasses, bridges and tunnels are generally built using blast furnace slag cement (BFSC, CEM III/B) concrete, because of its high resistance against chloride penetration. Although the Dutch experience regarding durability performance of BFSC concrete has been remarkably good, its resistance to carbonation is known to be sensitive, especially when the used slag percentage is high. In a field investigation on a highway overpass damage was found in sheltered elements such as abutments and intermediate supports, which was attributed to chloride induced corrosion enhanced by carbonation that occurred prior to the chloride exposure. Many structures built using BFSC could be prone to this mechanism, i.e. carbonation enhanced chloride induced corrosion, negatively affecting their durability. Focus of the research was given on the influence of carbonation on the chloride penetration resistance of BFSC mortars with varying slag content. In light of the characteristics from the overpass case, it was assumed that first there is a period of carbonation during sheltered exposure, and subsequently joint leakage causes exposure to chlorides. In order to identify the influence of slag content on carbonation, chloride penetration resistance and their coupled effect, mortars with twelve cement blends in a range of 0-70% slag were evaluated based on chloride migration coefficient, accelerated carbonation and electrical resistivity. This study shows that carbonation of BFSC mortars increases the porosity, consequently decreasing the chloride penetration resistance. Binders with 50% or more slag were found to have a significantly lower resistance after carbonation. Consequently, the chloride penetration resistance of a given concrete cover strongly depends on the duration of carbonation and the resulting carbonation depth, hence influencing its lifespan. The service life was estimated using a simplified model for the chloride penetration time of a combined carbonated and uncarbonated layer. It was found that mortar with a slag content between 35 and 50% that was carbonated before chloride exposure show the lowest influence of carbonation on the chloride penetration resistance. © Springer International Publishing AG 2018. Bam; Cement and Beton Centrum; et al.; Rijkswaterstaat - Ministry of Infrastructure and the Environment; Van Hattum en Blankevoort; VolkerInfr

    Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes

    Get PDF
    As the relative performance of alkali activated slag (AAS) concretes in comparison to portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6 % Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    corecore