10 research outputs found

    Magnetic inflation and stellar mass. III. revised parameters for the component stars of NSVS 07394765

    Full text link
    We perform a new analysis of the M-dwarf–M-dwarf eclipsing binary system NSVS 07394765 in order to investigate the reported hyper-inflated radius of one of the component stars. Our analysis is based on archival photometry from the Wide Angle Search for Planets, new photometry from the 32 cm Command Module Observatory telescope in Arizona and the 70 cm telescope at Thacher Observatory in California, and new high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrograph on the Discovery Channel Telescope. The masses and radii we measure for each component star disagree with previously reported measurements. We show that both stars are early M-type main-sequence stars without evidence for youth or hyper-inflation ( = - ☉ M M + 1 0.661 0.036 0.008 , = - ☉ M M + 2 0.608 0.028 0.003 , = - ☉ + R1 0.599 0.019 R 0.032 , = - ☉ + R2 0.625 0.027 R 0.012 ), and we update the orbital period and eclipse ephemerides for the system. We suggest that the likely cause of the initial hyper-inflated result is the use of moderate-resolution spectroscopy for precise radial velocity measurements.Published versio

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Full text link
    The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos' orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the first week, and 0.08-0.09 magnitudes/day over the entire study period. The system returned to its pre-impact brightness 24.3-25.3 days after impact through the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, through movement of the primary ejecta through the aperture likely played a role.Comment: 16 pages, 5 Figures, accepted in the Astrophysical Journal Letters (ApJL) on October 16, 202

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Get PDF
    The impact of the Double Asteroid Redirection Test spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos’s orbit substantially, largely from the ejection of material. We present results from 12 Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ∼1.4 mag, we find consistent dimming rates of 0.11–0.12 mag day−1 in the first week, and 0.08–0.09 mag day−1 over the entire study period. The system returned to its pre-impact brightness 24.3–25.3 days after impact though the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, though movement of the primary ejecta through the aperture likely played a role

    6764 Kirillavrov: A Binary Asteroid

    No full text
    Mutual events appearing in the lightcurve of 6764 Kirrillavrov unambiguously show that it is a binary asteroid with a rotation period of 4.739 ± 0.001 h, and an orbital period of 30.41 ± 0.01 h. Follow-up observations conducted during the 2021 opposition did not detect the mutual events due to unfavorable viewing geometry. Further observations during subsequent oppositions are encouraged.Fil: Polakis, Tom. Command Module Observatory; IslandiaFil: Oey, Julian. Blue Mountains Observatory; AustraliaFil: Colazo, Milagros Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    Synthesis, serum stability and cell uptake of cyclic and hairpin decoy Oligonucleotides for TCF/LEF and GLI transcription factors

    No full text
    A series of hairpin oligonucleotides bearing a 5?-alkyne and 3?-azide were cyclised using the CuAAC reaction to form cyclic decoys for targeting the DNA binding site of the TCF/LEF and GLI transcription factors. Incubation of a fluorescent hairpin oligomer and its cyclic analogue in fetal calf serum showed that the cyclic construct has significantly greater stability to enzymatic degradation. Cell uptake studies using HEK-293 cells with the fluorescent cyclic decoy in the presence of lipofectamine 2000 transfection agent indicated that this analogue is taken up by the cells and localizes to the cell nucleus. Localized fluorescence was observed in the nuclei of HEK-293 cells after only 1.5 h incubation which increased over a period of 4 h and persisted for 24 h

    Orbital period change of Dimorphos due to the DART kinetic impact

    Get PDF
    The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible2, 3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4–6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be −33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried

    The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell-specific tumor suppressor for development of lymphomas

    Get PDF
    The HMG-box factor Tcf1 is required during T-cell development in the thymus and mediates the nuclear response to Wnt signals. Tcf1(-/-) mice have previously been characterized and show developmental blocks at the CD4-CD8- double negative (DN) to CD4+CD8+ double positive transition. Due to the blocks in T-cell development, Tcf1(-/-) mice normally have a very small thymus. Unexpectedly, a large proportion of Tcf1(-/-) mice spontaneously develop thymic lymphomas with 50% of mice developing a thymic lymphoma/leukemia at the age of 16 wk. These lymphomas are clonal, highly metastatic, and paradoxically show high Wnt signaling when crossed with Wnt reporter mice and have high expression of Wnt target genes Lef1 and Axin2. In wild-type thymocytes, Tcf1 is higher expressed than Lef1, with a predominance of Wnt inhibitory isoforms. Loss of Tcf1 as repressor of Lef1 leads to high Wnt activity and is the initiating event in lymphoma development, which is exacerbated by activating Notch1 mutations. Thus, Notch1 and loss of Tcf1 functionally act as collaborating oncogenic events. Tcf1 deficiency predisposes to the development of thymic lymphomas by ectopic up-regulation of Lef1 due to lack of Tcf1 repressive isoforms and frequently by cooperating activating mutations in Notch1. Tcf1 therefore functions as a T-cell-specific tumor suppressor gene, besides its established role as a Wnt responsive transcription factor. Thus, Tcf1 acts as a molecular switch between proliferative and repressive signals during T-lymphocyte development in the thymus.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    Ejecta Evolution Following a Planned Impact into an Asteroid:The First Five Weeks

    Get PDF
    The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos' orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the first week, and 0.08-0.09 magnitudes/day over the entire study period. The system returned to its pre-impact brightness 24.3-25.3 days after impact through the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, through movement of the primary ejecta through the aperture likely played a role
    corecore