2,307 research outputs found

    A unified evaluation of iterative projection algorithms for phase retrieval

    Get PDF
    Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and the possibility of using radiation for which no lenses exist. The challenge of this imaging technique is transfered from the lenses to the algorithms. We evaluate these new computational ``instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.Comment: 12 pages, 9 figures, revte

    Global Newtonian limit for the Relativistic Boltzmann Equation near Vacuum

    Full text link
    We study the Cauchy Problem for the relativistic Boltzmann equation with near Vacuum initial data. Unique global in time "mild" solutions are obtained uniformly in the speed of light parameter c1c \ge 1. We furthermore prove that solutions to the relativistic Boltzmann equation converge to solutions of the Newtonian Boltzmann equation in the limit as cc\to\infty on arbitrary time intervals [0,T][0,T], with convergence rate 1/c2ϵ1/c^{2-\epsilon} for any ϵ(0,2)\epsilon \in(0,2). This may be the first proof of unique global in time validity of the Newtonian limit for a Kinetic equation.Comment: 35 page

    The role of teleworking in Britain: its implications for the transport system and economic evaluation

    Get PDF
    The probable impacts of teleworking in Britain were assessed through analysis of the National Travel Survey, and interviews with major organisations in the London area. These indicate relatively modest effects overall, but a growing element of part-week teleworking at home

    Social inhibition and emotional distress in patients with coronary artery disease:The type D personality construct

    Get PDF
    We examined the validity of the social inhibition component of Type D, its distinctiveness from negative affectivity, and value regarding emotional distress as measured with the DS14 in 173 coronary artery disease patients. In dimensional analysis, social inhibition and negative affectivity emerged as distinct traits. Analysis of continuous negative affectivity and social inhibition measures showed main effects for several emotional and inhibition markers and an interaction effect for social anxiety. Categorical analysis indicated that Type D patients reported more depression, negative mood, social anxiety, and less positive mood. Social inhibition is not a redundant trait, but has additional conceptual valu

    The effects of superconductor-stabilizer interfacial resistance on quench of current-carrying coated conductor

    Full text link
    We present the results of numerical analysis of a model of normal zone propagation in coated conductors. The main emphasis is on the effects of increased contact resistance between the superconducting film and the stabilizer on the speed of normal zone propagation, the maximum temperature rise inside the normal zone, and the stability margins. We show that with increasing contact resistance the speed of normal zone propagation increases, the maximum temperature inside the normal zone decreases, and stability margins shrink. This may have an overall beneficial effect on quench protection quality of coated conductors. We also briefly discuss the propagation of solitons and development of the temperature modulation along the wire.Comment: To be published in Superconductor Science and Technology. This preprint contains one animated figure (Fig. 6(a)). when asked whether you want to play the content, click "Play". Acrobat Reader (Windows and Mac, but not Linux) will play embedded flash movies. In the printed copy Fig. 6(b) will show the temperature profile at gamma t=15

    Finite-temperature effects on the superfluid Bose-Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

    Full text link
    We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the the on--site interaction in the BH model the robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature--interaction regimes

    The effects of superconductor-stabilizer interfacial resistance on quench of a pancake coil made out of coated conductor

    Full text link
    We present the results of numerical analysis of normal zone propagation in a stack of YBa2Cu3O7xYBa_2Cu_3O_{7-x} coated conductors which imitates a pancake coil. Our main purpose is to determine whether the quench protection quality of such coils can be substantially improved by increased contact resistance between the superconducting film and the stabilizer. We show that with increased contact resistance the speed of normal zone propagation increases, the detection of a normal zone inside the coil becomes possible earlier, when the peak temperature inside the normal zone is lower, and stability margins shrink. Thus, increasing contact resistance may become a viable option for improving the prospects of coated conductors for high TcT_c magnets applications.Comment: 9 pages, 4 figure

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Resonance phenomena in asymmetric superconducting quantum interference devices

    Full text link
    Theory of self induced resonances in asymmetric two-junction interferometer device is presented. In real devices it is impossible to have an ideal interferometer free of imperfections. Thus, we extended previous theoretical approaches introducing a model which contains several asymmetries: Josephson current ϵ\epsilon, capacitances χ\chi and dissipation ρ\rho presented in an equivalent circuit. Moreover, non conventional symmetry of the order parameter in high temperature superconducting quantum interference devices forced us to include phase asymmetries. Therefore, the model has been extended to the case of π\pi-shift interferometers, where a phase shift is present in one of the junctions.Comment: accepted to PRB, low quality figure

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged
    corecore