2,327 research outputs found

    Tools for Quantum Algorithms

    Get PDF
    We present efficient implementations of a number of operations for quantum computers. These include controlled phase adjustments of the amplitudes in a superposition, permutations, approximations of transformations and generalizations of the phase adjustments to block matrix transformations. These operations generalize those used in proposed quantum search algorithms.Comment: LATEX, 15 pages, Minor changes: one author's e-mail and one reference numbe

    Slow relaxation, confinement, and solitons

    Full text link
    Millisecond crystal relaxation has been used to explain anomalous decay in doped alkali halides. We attribute this slowness to Fermi-Pasta-Ulam solitons. Our model exhibits confinement of mechanical energy released by excitation. Extending the model to long times is justified by its relation to solitons, excitations previously proposed to occur in alkali halides. Soliton damping and observation are also discussed

    A unified evaluation of iterative projection algorithms for phase retrieval

    Get PDF
    Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and the possibility of using radiation for which no lenses exist. The challenge of this imaging technique is transfered from the lenses to the algorithms. We evaluate these new computational ``instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.Comment: 12 pages, 9 figures, revte

    Local dissipation effects in two-dimensional quantum Josephson junction arrays with magnetic field

    Full text link
    We study the quantum phase transitions in two-dimensional arrays of Josephson-couples junctions with short range Josephson couplings (given by the Josephson energy) and the charging energy. We map the problem onto the solvable quantum generalization of the spherical model that improves over the mean-field theory method. The arrays are placed on the top of a two-dimensional electron gas separated by an insulator. We include effects of the local dissipation in the presence of an external magnetic flux f in square lattice for several rational fluxes f=0,1/2,1/3,1/4 and 1/6. We also have examined the T=0 superconducting-insulator phase boundary as function of a dissipation alpha for two different geometry of the lattice: square and triangular. We have found critical value of the dissipation parameter independent on geometry of the lattice and presence magnetic field.Comment: accepted to PR

    Optimization-based design of control systems for flexible structures

    Get PDF
    The purpose of this presentation is to show that it is possible to use nonsmooth optimization algorithms to design both closed-loop finite dimensional compensators and open-loop optimal controls for flexible structures modeled by partial differential equations. An important feature of our approach is that it does not require modal decomposition and hence is immune to instabilities caused by spillover effects. Furthermore, it can be used to design control systems for structures that are modeled by mixed systems of coupled ordinary and partial differential equations

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged

    Resonance phenomena in asymmetric superconducting quantum interference devices

    Full text link
    Theory of self induced resonances in asymmetric two-junction interferometer device is presented. In real devices it is impossible to have an ideal interferometer free of imperfections. Thus, we extended previous theoretical approaches introducing a model which contains several asymmetries: Josephson current ϵ\epsilon, capacitances χ\chi and dissipation ρ\rho presented in an equivalent circuit. Moreover, non conventional symmetry of the order parameter in high temperature superconducting quantum interference devices forced us to include phase asymmetries. Therefore, the model has been extended to the case of π\pi-shift interferometers, where a phase shift is present in one of the junctions.Comment: accepted to PRB, low quality figure

    Constraints on the parameters of the Left Right Mirror Model

    Get PDF
    We study some phenomenological constraints on the parameters of a left right model with mirror fermions (LRMM) that solves the strong CP problem. In particular, we evaluate the contribution of mirror neutrinos to the invisible Z decay width (\Gamma_Z^{inv}), and we find that the present experimental value on \Gamma_Z^{inv}, can be used to place an upper bound on the Z-Z' mixing angle that is consistent with limits obtained previously from other low-energy observables. In this model the charged fermions that correspond to the standard model (SM) mix with its mirror counterparts. This mixing, simultaneously with the Z-Z' one, leads to modifications of the \Gamma(Z --> f \bar{f}) decay width. By comparing with LEP data, we obtain bounds on the standard-mirror lepton mixing angles. We also find that the bottom quark mixing parameters can be chosen to fit the experimental values of R_b, and the resulting values for the Z-Z' mixing angle do not agree with previous bounds. However, this disagreement disappears if one takes the more recent ALEPH data.Comment: 7 pages, 2 figures, REVTe
    corecore