112 research outputs found

    'No one in the driver's seat' : an agent-based modelling approach to decentralised behaviour in supply chain co-ordination

    Get PDF
    As decentralised supply chain networks become the norm and vertically integrated firms the exception, there is a need to better understand decentralised co-ordination in such supply chains. However, contemporary research in supply chain management proceeds under the assumption that there is always a dominant actor in the supply chain network who is ‘in the driver's seat’. This article describes a study that investigates situations in which effective industrial supply chain co-ordination is achieved by multiple, independent actors where ‘no-one is in the driver's seat’. It introduces a formal modelling method to investigate such issues, called agent-based modelling. In this, we build on the notion of complex adaptive systems. The article shows the application of this method in three experiments with an simple supply chain model in one specific agent-based simulation environment. Exploratory findings are discussed and promising areas for further research are indicated

    Diagnostic Accuracy of Different Surgical Procedures for Axillary Staging After Neoadjuvant Systemic Therapy in Node-positive Breast Cancer

    Get PDF
    Objective: The aim of this study was to perform a systematic review and meta-analysis to assess the accuracy of different surgical axillary staging procedures compared with ALND. Summary of Background Data: Optimal axillary staging after neoadjuvant systemic therapy (NST) in node-positive breast cancer is an area of controversy. Several less invasive procedures, such as sentinel lymph node biopsy (SLNB), marking axillary lymph node with radioactive iodine seed (MARI), and targeted axillary dissection (a combination of SLNB and a MARI-like procedure), have been proposed to replace the conventional axillary lymph node dissection (ALND) with its concomitant morbidity. Methods: PubMed and Embase were searched for studies comparing less invasive surgical axillary staging procedures to ALND to identify axillary burden after NSTin patients with pathologically confirmed node-positive breast cancer (cNþ). A meta-analysis was performed to compare identification rate (IFR), false-negative rate (FNR), and negative predictive value (NPV). Results: Of 1132 records, 20 unique studies with 2217 patients were included in quantitative analysis: 17 studies on SLNB, 1 study on MARI, and 2 studies on a combination procedure. Overall axillary pathologic complete response rate was 37%. For SLNB, pooled rates of IFR and FNR were 89% and 17%. NPV ranged from 57% to 86%. For MARI, IFR was 97%, FNR 7%, and NPV 83%. For the combination procedure, IFR was 100%, FNR ranged from 2% to 4%, and NPV from 92% to 97%. Conclusion: Axillary staging by a combination procedure consisting of SLNB with excision of a pre-NST marked positive lymph node appears to be most accurate for axillary staging after NST. More evidence from prospective multicenter trials is needed to confirm this

    Nonlinear Differential Equations Satisfied by Certain Classical Modular Forms

    Full text link
    A unified treatment is given of low-weight modular forms on \Gamma_0(N), N=2,3,4, that have Eisenstein series representations. For each N, certain weight-1 forms are shown to satisfy a coupled system of nonlinear differential equations, which yields a single nonlinear third-order equation, called a generalized Chazy equation. As byproducts, a table of divisor function and theta identities is generated by means of q-expansions, and a transformation law under \Gamma_0(4) for the second complete elliptic integral is derived. More generally, it is shown how Picard-Fuchs equations of triangle subgroups of PSL(2,R) which are hypergeometric equations, yield systems of nonlinear equations for weight-1 forms, and generalized Chazy equations. Each triangle group commensurable with \Gamma(1) is treated.Comment: 40 pages, final version, accepted by Manuscripta Mathematic

    Excision of both pretreatment marked positive nodes and sentinel nodes improves axillary staging after neoadjuvant systemic therapy in breast cancer

    Get PDF
    Background: Marking the axilla with radioactive iodine seed and sentinel lymph node (SLN) biopsy have been proposed for axillary staging after neoadjuvant systemic therapy in clinically node-positive breast cancer. This study evaluated the identification rate and detection of residual disease with combined excision of pretreatment-positive marked lymph nodes (MLNs) together with SLNs. Methods: This was a multicentre retrospective analysis of patients with clinically node-positive breast cancer undergoing neoadjuvant systemic therapy and the combination procedure (with or without axillary lymph node dissection). The identification rate and detection of axillary residual disease were calculated for the combination procedure, and for MLNs and SLNs separately. Results: At least one MLN and/or SLN(s) were identified by the combination procedure in 138 of 139 patients (identification rate 99·3 per cent). The identification rate was 92·8 per cent for MLNs alone and 87·8 per cent for SLNs alone. In 88 of 139 patients (63·3 per cent) residual axillary disease was detected by the combination procedure. Residual disease was shown only in the MLN in 20 of 88 patients (23 per cent) and only in the SLN in ten of 88 (11 per cent), whereas both the MLN and SLN contained residual disease in the remainder (58 of 88, 66 per cent). Conclusion: Excision of the pretreatment-positive MLN together with SLNs after neoadjuvant systemic therapy in patients with clinically node-positive disease resulted in a higher identification rate and improved detection of residual axillary disease

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
    corecore