347 research outputs found

    Improving teleportation of continuous variables by local operations

    Full text link
    We study a continuous-variable (CV) teleportation protocol based on a shared entangled state produced by the quantum-nondemolition (QND) interaction of two vacuum states. The scheme utilizes the QND interaction or an unbalanced beam splitter in the Bell measurement. It is shown that in the non-unity gain regime the signal transfer coefficient can be enhanced while the conditional variance product remains preserved by applying appropriate local squeezing operation on sender's part of the shared entangled state. In the unity gain regime it is demonstrated that the fidelity of teleportation can be increased with the help of the local squeezing operations on parts of the shared entangled state that convert effectively our scheme to the standard CV teleportation scheme. Further, it is proved analytically that such a choice of the local symplectic operations minimizes the noise by which the mean number of photons in the input state is increased during the teleportation. Finally, our analysis reveals that the local symplectic operation on sender's side can be integrated into the Bell measurement if the interaction constant of the interaction in the Bell measurement can be adjusted properly.Comment: 10 pages, 1 figure, discussion of the non-unity gain teleportation is adde

    Quantum Communication with Quantum Dot Spins

    Full text link
    Single electron spins in quantum dots are attractive for quantum communication because of their expected long coherence times. We propose a method to create entanglement between two remote spins based on the coincident detection of two photons emitted by the dots. Local nodes of several qubits can be realized using the dipole-dipole interaction between trions in neighboring dots and spectral addressing, allowing the realization of quantum repeater protocols. We have performed a detailed feasibility study of our proposal based on tight-binding calculations of quantum dot properties.Comment: 4 pages, 2 figures, new and improved version, explicit performance estimate

    Room temperature stable single-photon source

    Full text link
    We report on the realization of a stable solid state room temperature source for single photons. It is based on the fluorescence of a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. Antibunching has been observed in the fluorescence light under both continuous and pulsed excitation. Our source delivers 2*10^4 single-photon pulses per second at an excitation repetition rate of 10 MHz. The number of two-photon pulses is reduced by a factor of five compared to strongly attenuated coherent sources.Comment: 7 pages, 10 figures, accepted to the special issue of the European Physical Journal D on "Quantum interference and cryptographic keys: novel physics and advancing technologies", proceedings of the conference QUICK 200

    Twin polaritons in semiconductor microcavities

    Full text link
    The quantum correlations between the beams generated by polariton pair scattering in a semiconductor microcavity above the parametric oscillation threshold are computed analytically. The influence of various parameters like the cavity-exciton detuning, the intensity mismatch between the signal and idler beams and the amount of spurious noise is analyzed. We show that very strong quantum correlations between the signal and idler polaritons can be achieved. The quantum effects on the outgoing light fields are strongly reduced due to the large mismatch in the coupling of the signal and idler polaritons to the external photons

    Monitoring stimulated emission at the single photon level in one-dimensional atoms

    Get PDF
    We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde

    Correlated Photon Emission from a Single II-VI Quantum Dot

    Full text link
    We report correlation and cross-correlation measurements of photons emitted under continuous wave excitation by a single II-VI quantum dot (QD) grown by molecular-beam epitaxy. A standard technique of microphotoluminescence combined with an ultrafast photon correlation set-up allowed us to see an antibunching effect on photons emitted by excitons recombining in a single CdTe/ZnTe QD, as well as cross-correlation within the biexciton (X2X_{2})-exciton (XX) radiative cascade from the same dot. Fast microchannel plate photomultipliers and a time-correlated single photon module gave us an overall temporal resolution of 140 ps better than the typical exciton lifetime in II-VI QDs of about 250ps.Comment: 4 pages, 3 figures, to appear in Appl. Phys. Let

    Subnanosecond spectral diffusion of a single quantum dot in a nanowire

    Get PDF
    We have studied spectral diffusion of the photoluminescence of a single CdSe quantum dot inserted in a ZnSe nanowire. We have measured the characteristic diffusion time as a function of pumping power and temperature using a recently developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)] that offers subnanosecond resolution. These data are consistent with a model where only a \emph{single} carrier wanders around in traps located in the vicinity of the quantum dot

    Conditional preparation of a quantum state in the continuous variable regime: generation of a sub-Poissonian state from twin beams

    Full text link
    We report the first experimental demonstration of conditional preparation of a non classical state of light in the continuous variable regime. Starting from a non degenerate OPO which generates above threshold quantum intensity correlated signal and idler "twin beams", we keep the recorded values of the signal intensity only when the idler falls inside a band of values narrower than its standard deviation. By this very simple technique, we generate a sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of noise reduction in the intensity difference.Comment: 4 pages, Accepted in Phys. Rev. Let

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Quantum Non-demolition Measurements on Qubits

    Get PDF
    We discuss the characterization and properties of quantum non-demolition (QND) measurements on qubit systems. We introduce figures of merit which can be applied to systems of any Hilbert space dimension thus providing universal criteria for characterizing QND measurements. We discuss the controlled-NOT gate and an optical implementation as examples of QND devices for qubits. We also discuss the QND measurement of weak values
    corecore