348 research outputs found
Directly Coupled Tiles as Elements of a Scintillator Calorimeter with MPPC Readout
Abstract We present results on the direct i.e. fiberless coupling of scintillator tiles to Multipixel Photon Counters (MPPC). The fiberless option has the potential of simplifying the assembly and construction of a finely-segmented scintillator-based calorimeter with MPPC readout. In this paper we show detailed studies on the response and uniformity of directly coupled tiles and describe our concept for an Integrated Readout Layer (IRL)
Mass fractionation of noble gases in synthetic methane hydrate : implications for naturally occurring gas hydrate dissociation
This paper is not subject to U.S. copyright. The definitive version was published in Chemical Geology 339 (2013): 242-250, doi:10.1016/j.chemgeo.2012.09.033.As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the oceanâatmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.Partial support for this research was provided by Interagency Agreements
DE-FE0002911 and DE-NT0006147 between the U.S. Geological
Survey Gas Hydrates Project and the U.S. Department of Energy's Methane
Hydrates Research and Development Program
Rapid sea level rise and ice sheet response to 8,200-year climate event
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L20603, doi:10.1029/2007GL031318.The largest abrupt climatic reversal of the Holocene interglacial, the cooling event 8.6â8.2 thousand years ago (ka), was probably caused by catastrophic release of glacial Lake Agassiz-Ojibway, which slowed Atlantic meridional overturning circulation (AMOC) and cooled global climate. Geophysical surveys and sediment cores from Chesapeake Bay reveal the pattern of sea level rise during this event. Sea level rose ~14 m between 9.5 to 7.5 ka, a pattern consistent with coral records and the ICE-5G glacio-isostatic adjustment model. There were two distinct periods at ~8.9â8.8 and ~8.2â7.6 ka when Chesapeake marshes were drown as sea level rose rapidly at least ~12 mm yrâ1. The latter event occurred after the 8.6â8.2 ka cooling event, coincided with extreme warming and vigorous AMOC centered on 7.9 ka, and may have been due to Antarctic Ice Sheet decay.Cronin, Willard, Thunell, Berke
supported by USGS Earth Surface Dynamics Program; Vogt and Pohlman
by Office of Naval Research; Halka by MGS
Focused Fluid Flow along the Nootka Fault Zone and Continental slope, ExplorerâJuan de Fuca Plate Boundary
Key Points:
- Fluid flow is focused along Nootka Fault traces resulting in shallow bright spots
- Two seafloor mounds are the result of basaltic intrusions in the Nootka Fault zone
- Gas hydrates occur at the Nootka Slope and are imaged seismically as bottom-
simulating reflectors suggesting a regional heat-flow of ~80 mW/m2 along the slope
Abstract
Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from > 20 years of investigations to demonstrate the nature of fluidâflow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to nearâseafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100 â 300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show oppositeâtoâseafloor reflection polarity, and are associated with frequencyâreduction and velocity pushâdown indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonâconformable high amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottomâvideo observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios < 500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate related bottomâsimulating reflectors are widespread and occur at depths indicating heatâflow values of 80 â 90 mW/m2
Stromal gene signatures in large-B-cell lymphomas.
BACKGROUND: The addition of rituximab to combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), or R-CHOP, has significantly improved the survival of patients with diffuse large-B-cell lymphoma. Whether gene-expression signatures correlate with survival after treatment of diffuse large-B-cell lymphoma is unclear.
METHODS: We profiled gene expression in pretreatment biopsy specimens from 181 patients with diffuse large-B-cell lymphoma who received CHOP and 233 patients with this disease who received R-CHOP. A multivariate gene-expression-based survival-predictor model derived from a training group was tested in a validation group.
RESULTS: A multivariate model created from three gene-expression signatures--termed germinal-center B-cell, stromal-1, and stromal-2 --predicted survival both in patients who received CHOP and patients who received R-CHOP. The prognostically favorable stromal-1 signature reflected extracellular-matrix deposition and histiocytic infiltration. By contrast, the prognostically unfavorable stromal-2 signature reflected tumor blood-vessel density.
CONCLUSIONS: Survival after treatment of diffuse large-B-cell lymphoma is influenced by differences in immune cells, fibrosis, and angiogenesis in the tumor microenvironment
PAH mineralization and bacterial organotolerance in surface sediments of the Charleston Harbor estuary
Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December)
- âŠ