147 research outputs found

    Shear Stress Induces the Release of an Endothelial Elastase: Role in Integrin alpha(v)beta(3)-Mediated FGF-2 Release

    Get PDF
    Background/Aims: Laminar shear stress is an important stimulus in the endothelium-dependent control of vascular tone and of vascular remodeling processes. Based on previous studies demonstrating integrin-mediated release of fibroblast growth factor 2 (FGF-2), we investigated whether shear stress-induced integrin activation requires the involvement of an extracellular protease. Methods: Cultured porcine aortic endothelial cells (PAEC) were exposed to laminar shear stress (16 dyn/cm(2)), whereas static cells served as controls. Results: Exposure of PAEC to shear stress led to an increased activity of a protease in supernatants. This protease could be characterized as elastase but was different from neutrophil and pancreatic elastases. The enhanced activity was accompanied by the activation of integrin alpha(v)beta(3) and p38 MAPK, and followed by an increased FGF-2 concentration in the supernatant. Pretreatment with inhibitors of either elastase or integrin alpha(v)beta(3) resulted in a reduction of FGF-2 release. The observed effects of shear stress on integrin alpha(v)beta(3) and p38 MAPK activation, as well as on FGF-2 release could be mimicked by application of pancreatic elastase to static endothelial cells. Conclusion: By inducing the release of an endothelial elastase, shear stress induces an integrin-dependent release of FGF-2 from endothelial cells. Copyright (C) 2011 S. Karger AG, Base

    Theory of the n=2 levels in muonic deuterium

    Full text link
    The present knowledge of Lamb shift, fine- and hyperfine structure of the 2S\mathrm{2S} and 2P\mathrm{2P} states in muonic deuterium is reviewed in anticipation of the results of a first measurement of several 2S−2P\mathrm{2S-2P} transition frequencies in muonic deuterium (μd\mu\mathrm{d}). A term-by-term comparison of all available sources reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift, which are essential for a determination of the deuteron rms charge radius from μd\mu\mathrm{d}. Apparent discrepancies between different sources are resolved, in particular for the difficult two-photon exchange contributions. Problematic single-sourced terms are identified which require independent recalculation.Comment: 26 pages, add missing feynman diagrams (Fig. 3), renumber items (Tab. IV), correct a sum (column 5, Tab. IV

    Asymmetric Rydberg blockade of giant excitons in cuprous oxide

    Get PDF
    The ability to generate and control strong long-range interactions via highly excited electronic states has been the foundation for recent breakthroughs in a host of areas, from atomic and molecular physics to quantum optics and technology. Rydberg excitons provide a promising solid-state realization of such highly excited states, for which record-breaking orbital sizes of up to a micrometer have indeed been observed in cuprous oxide semiconductors. Here, we demonstrate the generation and control of strong exciton interactions in this material by optically producing two distinct quantum states of Rydberg excitons. This is made possible by two-color pump-probe experiments that allow for a detailed probing of the interactions. Our experiments reveal the emergence of strong spatial correlations and an inter-state Rydberg blockade that extends over remarkably large distances of several micrometers. The generated many-body states of semiconductor excitons exhibit universal properties that only depend on the shape of the interaction potential and yield clear evidence for its vastly extended-range and power-law character

    Asymmetric Rydberg blockade of giant excitons in Cuprous Oxide

    Full text link
    The ability to generate and control strong long-range interactions via highly excited electronic states has been the foundation for recent breakthroughs in a host of areas, from atomic and molecular physics [1, 2] to quantum optics [3, 4] and technology [5-7]. Rydberg excitons provide a promising solid-state realization of such highly excited states, for which record-breaking orbital sizes of up to a micrometer have indeed been observed in cuprous oxide semiconductors [8]. Here, we demonstrate the generation and control of strong exciton interactions in this material by optically producing two distinct quantum states of Rydberg excitons. This makes two-color pump-probe experiments possible that allow for a detailed probing of the interactions. Our experiments reveal the emergence of strong spatial correlations and an inter-state Rydberg blockade that extends over remarkably large distances of several micrometers. The generated many-body states of semiconductor excitons exhibit universal properties that only depend on the shape of the interaction potential and yield clear evidence for its vastly extended-range and power-law character.Comment: Main script: 7 pages, 3 figures. Supplementary file 15 pages, 5 figure

    Operation strategies of battery energy storage systems for preventive and curative congestion management in transmission grids

    Get PDF
    Anticipating and relieving congestions is an ongoing challenge for transmission system operators. Distributed grid-scale battery energy storage systems enable operators to shift power flows and remedy congestion through virtual power lines and grid boosters. This paper includes battery energy storage systems in a combined preventive and curative congestion management optimization. First, it analyzes the impact of the two operational strategies in a case study of the German transmission grid. Furthermore, it outlines curative ad-hoc measures to overcome uncertainties during operational planning and real-time operation. The simulation results indicate that battery energy storage systems further increase the use of curative measures and reduce congestion management costs

    Prevalence of Steatosis Hepatis in the Eurotransplant Region: Impact on Graft Acceptance Rates

    Get PDF
    Due to the shortage of liver allografts and the rising prevalence of fatty liver disease in the general population, steatotic liver grafts are considered for transplantation.This condition is an important risk factor for the outcome after transplantation.We here analyze the characteristics of the donor pool offered to the Charité –Universitätsmedizin Berlin from 2010 to 2016 with respect to liver allograft nonacceptance and steatosis hepatis. Of the 2653 organs offered to our center, 19.9% (n=527) were accepted for transplantation, 58.8% (n=1561) were allocated to other centers, and 21.3% (n = 565) were eventually discarded from transplantation. In parallel to an increase of the incidence of steatosis hepatis in the donor pool from 20% in 2010 to 30% in 2016, the acceptance rates for steatotic organs increased in our center from 22.3% to 51.5% in 2016 (p 0.001) having less than 30% macrovesicular steatosis hepatis. However, by 2016, the number of canceled transplantations due to higher grades of steatosis hepatis had significantly increased from 14.7% (n = 15) to 63.6% (42; p < 0.001).The rising prevalence of steatosis hepatis in the donor pool has led to higher acceptance rates of steatotic allografts. Nonetheless, steatosis hepatis remains a predominant phenomenon in discarded organs necessitating future concepts such as organ reconditioning to increase graft utilization

    Total Psoas Muscle Area as a Marker for Sarcopenia Is Related to Outcome in Children With Neuroblastoma

    Get PDF
    Background: Sarcopenia describes a generalized loss of skeletal muscle mass, strength, or function. Determined by measuring the total psoas muscle area (tPMA) on cross-sectional imaging, sarcopenia is an independent marker for poor post-surgical outcomes in adults and children. Children with cancer are at high risk for sarcopenia due to immobility, chemotherapy, and cachexia. We hypothesize that sarcopenic children with neuroblastoma are at higher risk for poor post-operative outcomes. Patients and Methods: Retrospective analysis of children with neuroblastoma ages 1–15 years who were treated at our hospital from 2008 to 2016 with follow-up through March 2021. Psoas muscle area (PMA) was measured from cross-sectional images, using computed tomography (CT) and magnetic resonance imaging (MRI) scans at lumbar disc levels L3-4 and L4-5. tPMA is the sum of the left and right PMA. Z-scores were calculated using age- and gender-specific reference values. Sarcopenia was defined as a tPMA z-score below −2. A correlation of tPMA z-scores and sarcopenia with clinical variables and outcome was performed. Results: One hundred and sixty-four children with workup for neuroblastoma were identified, and 101 children fulfilled inclusion criteria for further analysis, with a mean age of 3.92 years (SD 2.71 years). Mean tPMA z-score at L4-5 was −2.37 (SD 1.02). Correlation of tPMA z-score at L4-5 with weight-for-age z-score was moderate (r = 0.54; 95% CI, 0.38, 0.66). No association between sarcopenia and short-term outcome was observed. Sarcopenia had a sensitivity of 0.82 (95% CI, 0.62–0.93) and a specificity of 0.48 (95% CI 0.36–0.61) in predicting 5-year survival. In a multiple regression analysis, pre-operative sarcopenia, pre-operative chemotherapy in the NB2004 high-risk group, unfavorable tumor histology, and age at diagnosis were associated with 5-year survival after surgery, with hazard ratios of 4.18 (95% CI 1.01–17.26), 2.46 (95% CI 1.02–5.92), 2.39 (95% CI 1.03–5.54), and 1.01 (95% CI 1.00–1.03), respectively. Conclusion: In this study, the majority of children had low tPMA z-scores and sarcopenia was a risk factor for decreased 5-year survival in children with neuroblastoma. Therefore, we suggest measuring the tPMA from pre-surgical cross-sectional imaging as a biomarker for additional risk stratification in children with neuroblastoma
    • …
    corecore