147 research outputs found

    Motion direction, speed and orientation in binocular matching

    Get PDF
    The spatial differences between the images seen by the two eyes, called binocular disparities, can be used to recover the volumetric (three-dimensional) aspects of a scene. The computation of disparity depends upon the correct identi®cation of corresponding features in the two images. Understanding what image features are used by the brain to solve this matching problem is one of the main issues in stereoscopic vision. Many cortical neurons in visual areas V1 (ref. 2), MT (refs 3, 4) and MST (refs 5, 6) that are tuned to binocular disparity are also tuned to orientation, motion direction and speed. Although psychophysical work has shown that motion direction can facilitate binocular matching, the psychophysical literature on the role of orientation is mixed^8,9 , and it has been argued that speed differences are ineffective in aiding correspondence^7. Here we use a different psychophysical paradigm to show that the visual system uses similarities in orientation, motion direction and speed to achieve binocular correspondence. These results indicate that cells that multiplex orientation, motion direction, speed and binocular disparity may help to solve the binocular matching problem

    Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects

    Get PDF
    Our understanding of the neural underpinnings of perception is largely built upon studies employing 2-dimensional (2D) planar images. Here we used slow event-related functional imaging in humans to examine whether neural populations show a characteristic repetition-related change in haemodynamic response for real-world 3-dimensional (3D) objects, an effect commonly observed using 2D images. As expected, trials involving 2D pictures of objects produced robust repetition effects within classic object-selective cortical regions along the ventral and dorsal visual processing streams. Surprisingly, however, repetition effects were weak, if not absent on trials involving the 3D objects. These results suggest that the neural mechanisms involved in processing real objects may therefore be distinct from those that arise when we encounter a 2D representation of the same items. These preliminary results suggest the need for further research with ecologically valid stimuli in other imaging designs to broaden our understanding of the neural mechanisms underlying human vision

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    A Reaction-Diffusion Model to Capture Disparity Selectivity in Primary Visual Cortex

    Get PDF
    Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization

    On the Bounds of Function Approximations

    Full text link
    Within machine learning, the subfield of Neural Architecture Search (NAS) has recently garnered research attention due to its ability to improve upon human-designed models. However, the computational requirements for finding an exact solution to this problem are often intractable, and the design of the search space still requires manual intervention. In this paper we attempt to establish a formalized framework from which we can better understand the computational bounds of NAS in relation to its search space. For this, we first reformulate the function approximation problem in terms of sequences of functions, and we call it the Function Approximation (FA) problem; then we show that it is computationally infeasible to devise a procedure that solves FA for all functions to zero error, regardless of the search space. We show also that such error will be minimal if a specific class of functions is present in the search space. Subsequently, we show that machine learning as a mathematical problem is a solution strategy for FA, albeit not an effective one, and further describe a stronger version of this approach: the Approximate Architectural Search Problem (a-ASP), which is the mathematical equivalent of NAS. We leverage the framework from this paper and results from the literature to describe the conditions under which a-ASP can potentially solve FA as well as an exhaustive search, but in polynomial time.Comment: Accepted as a full paper at ICANN 2019. The final, authenticated publication will be available at https://doi.org/10.1007/978-3-030-30487-4_3

    Progression of kidney disease in type 2 diabetes – beyond blood pressure control: an observational study

    Get PDF
    BACKGROUND: The risk factors for progression of chronic kidney disease (CKD) in type 2 diabetes mellitus (DM) have not been fully elucidated. Although uncontrolled blood pressure (BP) is known to be deleterious, other factors may become more important once BP is treated. METHODS: All patients seen in the outpatient clinics of our hospital between January 1993 and September 2002 with type 2 DM and clinical evidence of CKD were evaluated. Progression of kidney disease was evaluated by rate of decline of glomerular filtration rate (GFR) as estimated from the simplified MDRD formula. Variables associated with progression in univariate analyses were examined by multivariate analysis to determine the factors independently associated with kidney disease progression. RESULTS: 343 patients (mean age 69 years; all male; 77% Caucasian) were studied. Mean BP, glycated hemoglobin, and serum cholesterol during the study period were 138/72 mmHg, 8.1%, and 4.8 mmol/L, respectively. Mean decline of GFR was 4.5 ml min-1 1.73 m(2)-1 yr-1 (range -14 to +32). Low initial serum albumin (p < 0.001), black race (p < 0.001), and degree of proteinuria (p = 0.002), but not blood pressure, glycated hemoglobin, or serum cholesterol, were independently associated with progression. CONCLUSION: In a cohort of diabetic patients with CKD in whom mean BP was < 140/80 mmHg, the potentially remediable factors hypoalbuminemia and proteinuria but not blood pressure were independently associated with progression of kidney disease. Further understanding of the relationship between these factors and kidney disease progression may lead to beneficial therapies in such patients

    Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain

    Get PDF
    Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus

    Estimated GFR reporting is not sufficient to allow detection of chronic kidney disease in an Italian regional hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) is an emerging worldwide problem. The lack of attention paid to kidney disease is well known and has been described in previous publications. However, little is known about the magnitude of the problem in highly specialized hospitals where serum creatinine values are used to estimate GFR values.</p> <p>Methods</p> <p>We performed a cross-sectional evaluation of hospitalized adult patients who were admitted to the medical or surgical department of Santa Maria della Misericordia Hospital in 2007. Information regarding admissions was derived from a database. Our goal was to assess the prevalence of CKD (defined as an estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m<sup>2</sup>) and detection of CKD using diagnostic codes (Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM]). To reduce the impact of acute renal failure on the study, the last eGFR obtained during hospitalization was the value used for analysis, and intensive care and nephrology unit admissions were excluded. We also excluded patients who had ICD-9-CM codes for renal replacement therapy, acute renal failure, and contrast administration listed as discharge diagnoses.</p> <p>Results</p> <p>Of the 18,412 patients included in the study, 4,748 (25.8%) had reduced eGFRs, falling into the category of Kidney Disease Outcomes Quality Initiative (KDOQI) stage 3 (or higher) CKD. However, the diagnosis of CKD was only reported in 19% of these patients (904/4,748). It is therefore evident that there was a "gray area" corresponding to stage 3 CKD (eGFR 30-59 ml/min), in which most CKD diagnoses are missed. The ICD-9 code sensitivity for detecting CKD was significantly higher in patients with diabetes, hypertension, and cardiovascular disease (26.8%, 22.2%, and 23.7%, respectively) than in subjects without diabetes, hypertension, or cardiovascular disease (p < 0.001), but these values are low when the widely described relationship between such comorbidities and CKD is considered.</p> <p>Conclusion</p> <p>Although CKD was common in this patient population at a large inpatient regional hospital, the low rates of CKD detection emphasize the primary role nephrologists must play in continued medical education, and the need for ongoing efforts to train physicians (particularly primary care providers) regarding eGFR interpretation and systematic screening for CKD in high-risk patients (i.e., the elderly, diabetics, hypertensives, and patients with CV disease).</p

    Visual adaptation enhances action sound discrimination

    Get PDF
    Prolonged exposure, or adaptation, to a stimulus in one modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in one modality can bias perception in another modality. Here we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory or audiovisual hand actions enhanced discrimination between two subsequently presented hand action sounds. Discrimination was most enhanced when the visual action ‘matched’ the auditory action. In addition, prior adaptation to a visual, auditory or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation induced crossmodal enhancements cannot be explained by post-perceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli

    Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior

    Get PDF
    Contains fulltext : 95738.pdf (publisher's version ) (Open Access)BACKGROUND: Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. RESULTS: We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. CONCLUSION: Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm
    corecore