77 research outputs found

    Intense or Spatially Heterogeneous Predation Can Select against Prey Dispersal

    Get PDF
    Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation will promote dispersal within prey. Moreover, the evolution of prey dispersal affects strongly the encounter rate of predator and prey individuals, which greatly determines the ecological dynamics, and in turn changes the selection pressures for prey dispersal, in an eco-evolutionary feedback loop. When taken all together the effect of predation on prey dispersal is rather difficult to predict. We analyze a spatially explicit, individual-based predator-prey model and its mathematical approximation to investigate the evolution of prey dispersal. Competition and predation depend on local, rather than landscape-scale densities, and the spatial pattern of predation corresponds well to that of predators using restricted home ranges (e.g. central-place foragers). Analyses show the balance between the level of competition and predation pressure an individual is expected to experience determines whether prey should disperse or stay close to their parents and siblings, and more predation selects for less prey dispersal. Predators with smaller home ranges also select for less prey dispersal; more prey dispersal is favoured if predators have large home ranges, are very mobile, and/or are evenly distributed across the landscape

    Lack of Detectable HIV-1 Molecular Evolution during Suppressive Antiretroviral Therapy

    Get PDF
    A better understanding of changes in HIV-1 population genetics with combination antiretroviral therapy (cART) is critical for designing eradication strategies. We therefore analyzed HIV-1 genetic variation and divergence in patients' plasma before cART, during suppression on cART, and after viral rebound. Single-genome sequences of plasma HIV-1 RNA were obtained from HIV-1 infected patients prior to cART (N = 14), during suppression on cART (N = 14) and/or after viral rebound following interruption of cART (N = 5). Intra-patient population diversity was measured by average pairwise difference (APD). Population structure was assessed by phylogenetic analyses and a test for panmixia. Measurements of intra-population diversity revealed no significant loss of overall genetic variation in patients treated for up to 15 years with cART. A test for panmixia, however, showed significant changes in population structure in 2/10 patients after short-term cART (<1 year) and in 7/10 patients after long-term cART (1-15 years). The changes consisted of diverse sets of viral variants prior to cART shifting to populations containing one or more genetically uniform subpopulations during cART. Despite these significant changes in population structure, rebound virus after long-term cART had little divergence from pretherapy virus, implicating long-lived cells infected before cART as the source for rebound virus. The appearance of genetically uniform virus populations and the lack of divergence after prolonged cART and cART interruption provide strong evidence that HIV-1 persists in long-lived cells infected before cART was initiated, that some of these infected cells may be capable of proliferation, and that on-going cycles of viral replication are not evident

    Konduktometrisehe Studien

    No full text

    Konduktometrische Studien

    No full text

    Literatur

    No full text

    �ber die Bestimmung von Natriumhydroxyd neben Natriumearbonat

    No full text

    Autoxydation

    No full text

    Bücherbesprechungen

    No full text
    • …
    corecore