76 research outputs found

    Temporal regulation of vegetative phase change in plants

    Get PDF
    During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance

    Sugar Promotes Vegetative Phase Change in \u3cem\u3eArabidopsis thaliana\u3c/em\u3e by Repressing the Expression of \u3cem\u3eMIR156A\u3c/em\u3e and \u3cem\u3eMIR156C\u3c/em\u3e

    Get PDF
    Nutrients shape the growth, maturation, and aging of plants and animals. In plants, the juvenile to adult transition (vegetative phase change) is initiated by a decrease in miR156. In Arabidopsis, we found that exogenous sugar decreased the abundance of miR156, whereas reduced photosynthesis increased the level of this miRNA. This effect was correlated with a change in the timing of vegetative phase change, and was primarily attributable to a change in the expression of two genes, MIR156A and MIR156C, which were found to play dominant roles in this transition. The glucose-induced repression of miR156 was dependent on the signaling activity of HEXOKINASE1. We also show that the defoliation-induced increase in miR156 levels can be suppressed by exogenous glucose. These results provide a molecular link between nutrient availability and developmental timing in plants, and suggest that sugar is a component of the leaf signal that mediates vegetative phase chang

    DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis.

    Get PDF
    Dicer-like (DCL) enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA) that triggers silencing into the primary short interfering RNAs (siRNAs) that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR)-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2-but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought

    GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression.

    Get PDF
    To facilitate the monitoring of guard cells during development and isolation, a population of 704 GAL4 GFP enhancer trap lines was screened and four single insert lines with guard cell GFP expression and one with developmentally-regulated guard cell GFP expression were identified. The location of the T-DNA inserts, the expression of the flanking genes, and the promoter activity of the genomic DNA upstream of the T-DNA were characterized. The results indicated that the GFP expression pattern in at least one of the lines was due to elements in the intergenic DNA immediately upstream of the T-DNA, rather than due to the activity of the promoters of genes flanking the insert, and provide evidence for the involvement of Dof elements in regulating guard cell gene expression. It is shown further that the GAL4 GFP lines can be used to track the contribution of guard cell material in vitro, and this method was used to assess the purity of guard cell samples obtained using two methods of guard cell isolation

    Developmental Functions of miR156-Regulated \u3cem\u3eSQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)\u3c/em\u3e Genes in \u3cem\u3eArabidopsis thaliana\u3c/em\u3e

    Get PDF
    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development—the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition—are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development

    MiRNA Control of Vegetative Phase Change in Trees

    Get PDF
    After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees

    The Past, Present, and Future of Vegetative Phase Change1

    No full text

    Time to grow up: the temporal role of smallRNAs in plants

    Full text link
    Este proyecto define la propuesta de rehabilitación integral del edificio situado en la C/Sánchez Pastor nº3 de Málaga. La finalidad de esta actuación es reencontrar y hacer compatibles, de una forma armónica y equilibrada, el uso de vivienda con criterios de funcionalidad y valor de uso actuales y la estructura física del edificio con los condicionantes derivados de su singularidad
    corecore