95 research outputs found

    Construction and Testing of orfA +/- FIV Reporter Viruses

    Get PDF
    Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV), where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+) and (-) for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation

    LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors

    Get PDF
    LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi's sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism

    Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting

    Get PDF
    To replicate, lentiviruses such as HIV must integrate DNA copies of their RNA genomes into host cell chromosomes. Lentiviral integration is favored in active transcription units, which allows efficient viral gene expression after integration, but the mechanisms directing integration targeting are incompletely understood. A cellular protein, PSIP1/LEDGF/p75, binds tightly to the lentiviral-encoded integrase protein (IN), and has been reported to be important for HIV infectivity and integration targeting.Here we report studies of lentiviral integration targeting in 1) human cells with intensified RNAi knockdowns of PSIP1/LEDGF/p75, and 2) murine cells with homozygous gene trap mutations in the PSIP1/LEDGF/p75 locus. Infections with vectors derived from equine infections anemia virus (EIAV) and HIV were compared. Integration acceptor sites were analyzed by DNA bar coding and pyrosequencing.In both PSIP1/LEDGF/p75-depleted cell lines, reductions were seen in lentiviral infectivity compared to controls. For the human cells, integration was reduced in transcription units in the knockdowns, and this reduction was greater than in our previous studies of human cells less completely depleted for PSIP1/LEDGF/p75. For the homozygous mutant mouse cells, similar reductions in integration in transcription units were seen, paralleling a previous study of a different mutant mouse line. Integration did not become random, however-integration in transcription units in both cell types was still favored, though to a reduced degree. New trends also appeared, including favored integration near CpG islands. In addition, we carried out a bioinformatic study of 15 HIV integration site data sets in different cell types, which showed that the frequency of integration in transcription units was correlated with the cell-type specific levels of PSIP1/LEDGF/p75 expression

    Hemingway’s Last Letter

    No full text
    Reflection on Hemingway’s time spent at the Mayo Clinic for treatment of depression and alcoholism. Discusses Hemingway’s celebrity status, fascination with alcohol and death in his writings, and the last letter he wrote to a friend’s son in 1961, just prior to his suicide. Poeschla comments on the letter’s optimistic tone and stylistic echoes of “In Another Country.

    Mapping the Encapsidation Determinants of Feline Immunodeficiency Virus

    No full text
    Encapsidation of retroviral RNA involves specific interactions between viral proteins and cis-acting genomic RNA sequences. Human immunodeficiency virus type 1 (HIV-1) RNA encapsidation determinants appear to be more complex and dispersed than those of murine retroviruses. Feline lentiviral (feline immunodeficiency virus [FIV]) encapsidation has not been studied. To gain comparative insight into lentiviral encapsidation and to optimize FIV-based vectors, we used RNase protection assays of cellular and virion RNAs to determine packaging efficiencies of FIV deletion mutants, and we studied replicative phenotypes of mutant viruses. Unlike the case for other mammalian retroviruses, the sequences between the major splice donor (MSD) and the start codon of gag contribute negligibly to FIV encapsidation. Moreover, molecular clones having deletions in this region were replication competent. In contrast, sequences upstream of the MSD were important for encapsidation, and deletion of the U5 element markedly reduced genomic RNA packaging. The contribution of gag sequences to packaging was systematically investigated with subgenomic FIV vectors containing variable portions of the gag open reading frame, with all virion proteins supplied in trans. When no gag sequence was present, packaging was abolished and marker gene transduction was absent. Inclusion of the first 144 nucleotides (nt) of gag increased vector encapsidation to detectable levels, while inclusion of the first 311 nt increased it to nearly wild-type levels and resulted in high-titer FIV vectors. However, the identified proximal gag sequence is necessary but not sufficient, since viral mRNAs that contain all coding regions, with or without as much as 119 nt of adjacent upstream 5′ leader, were excluded from encapsidation. The results identify a mechanism whereby FIV can encapsidate its genomic mRNA in preference to subgenomic mRNAs

    Feline Immunodeficiency Virus Gag Is a Nuclear Shuttling Protein

    No full text
    • …
    corecore