15 research outputs found

    Forskolin-induced Organoid Swelling is Associated with Long-term CF Disease Progression

    Get PDF
    RATIONALE: Cystic fibrosis (CF) is a monogenic life-shortening disease associated with highly variable individual disease progression which is difficult to predict. Here we assessed the association of forskolin-induced swelling (FIS) of patient-derived organoids (PDO) with long-term CF disease progression in multiple organs and compared FIS with the golden standard biomarker sweat chloride concentration (SCC). METHODS: We retrieved 9-year longitudinal clinical data from the Dutch CF Registry of 173 people with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Individual CFTR function was defined by FIS, measured as the relative size increase of intestinal organoids after stimulation with 0.8 µM forskolin, quantified as area under the curve (AUC). We used linear mixed effect models and multivariable logistic regression to estimate the association of FIS with long-term FEV1pp decline and development of pancreatic insufficiency, CF-related liver disease and diabetes. Within these models, FIS was compared with SCC. RESULTS: FIS was strongly associated with longitudinal changes of lung function, with an estimated difference in annual FEV1pp decline of 0.32% (95%CI: 0.11%-0.54%; p=0.004) per 1000-points change in AUC. Moreover, increasing FIS levels were associated with lower odds of developing pancreatic insufficiency (adjusted OR: 0.18, 95%CI: 0.07-0.46, p<0.001), CF-related liver disease (adjusted OR: 0.18, 95%CI: 0.06-0.54, p=0.002) and diabetes (adjusted OR: 0.34, 95%CI: 0.12-0.97, p=0.044). These associations were absent for SCC. CONCLUSION: This study exemplifies the prognostic value of a PDO-based biomarker within a clinical setting, which is especially important for people carrying rare CFTR mutations with unclear clinical consequences

    Strong inhibition of cholera toxin B subunit by affordable, polymer-based multivalent inhibitors

    No full text
    Cholera is a potentially fatal bacterial infection that affects a large number of people in the developing countries. It is caused by the cholera toxin (CT), an AB5 toxin secreted by Vibrio cholera. The toxin comprises of a toxic A-subunit and a pentameric B-subunit that binds to the intestinal cell surface. Several monovalent and multivalent inhibitors of the toxin have been synthesized but are too complicated and expensive for practical use in developing countries. Meta-nitrophenyl α-galactoside (MNPG) is a known promising ligand for CT and here mono- and multivalent compounds based on MNPG were synthesized. We present the synthesis of MNPG in greatly improved yields and its use while linked to a multivalent scaffold. We used economical polymers as multivalent scaffolds, namely polyacrylamide, dextran and hyperbranched polyglycerols (hPGs). Copper catalyzed alkyne azide cycloaddition reaction (CuAAC) produced the inhibitors that were tested in an ELISA-type assay and an intestinal organoid swelling inhibition assay. The inhibitory properties varied widely depending on the type of polymer and the most potent conju-gates showed IC50 values in the nanomolar range

    Strong inhibition of cholera toxin B subunit by affordable, polymer-based multivalent inhibitors

    No full text
    Cholera is a potentially fatal bacterial infection that affects a large number of people in developing countries. It is caused by the cholera toxin (CT), an AB 5 toxin secreted by Vibrio cholera. The toxin comprises a toxic A-subunit and a pentameric B-subunit that bind to the intestinal cell surface. Several monovalent and multivalent inhibitors of the toxin have been synthesized but are too complicated and expensive for practical use in developing countries. Meta-nitrophenyl α-galactoside (MNPG) is a known promising ligand for CT, and here mono- and multivalent compounds based on MNPG were synthesized. We present the synthesis of MNPG in greatly improved yields and its use while linked to a multivalent scaffold. We used economical polymers as multivalent scaffolds, namely, polyacrylamide, dextran, and hyperbranched polyglycerols (hPGs). Copper-catalyzed alkyne azide cycloaddition reaction (CuAAC) produced the inhibitors that were tested in an ELISA-type assay and an intestinal organoid swelling inhibition assay. The inhibitory properties varied widely depending on the type of polymer, and the most potent conjugates showed IC 50 values in the nanomolar range

    A 'catch-and-release' receptor for the cholera toxin

    No full text
    Stimuli-responsive receptors for the recognition unit of the cholera toxin (CTB) have been prepared by attaching multiple copies of its natural carbohydrate ligand, the GM1 oligosaccharide, to a thermoresponsive polymer scaffold. Below their lower critical solution temperature (LCST), polymers complex CTB with nanomolar affinity. When heated above their LCST, polymers undergo a reversible coil to globule transition which renders a proportion of the carbohydrate recognition motifs inaccessible to CTB. This thermally-modulated decrease in the avidity of the material for the protein has been used to reversibly capture CTB from solution, enabling its convenient isolation from a complex mixture

    TP53 Y220C Is a Hotspot Mutation in Oropharyngeal Squamous Cell Carcinoma

    No full text
    Objectives: Although TP53 mutations in head and neck squamous cell carcinoma (HNSCC) have been extensively studied, their association with the different subsites in the head and neck region has never been described. Methods: Sanger sequence analysis evaluating exons 4-9 in the TP53 gene was performed on 116 HNSCC patients. The exon location, exact codon and corresponding substitution in relation to the anatomical site (subsite) of the HNSCC were evaluated. Results: We found nonsynonymous TP53 mutations in 70% (81/116) of the patients. In oral cavity carcinomas, most mutations occurred in exon 7 (37%). In oropharyngeal and laryngeal tumors, mutations were mainly found in exons 6 and 7. The most common mutation was located in codon 220, and all of these were an Y220C mutation. Five out of nine (56%) Y220C mutations occurred in oropharyngeal tumors. Additionally, 22% of all mutations observed in oropharyngeal squamous cell carcinoma (OPSCC) consisted of Y220C mutations. Conclusion: In this study, the subsite-related distribution of TP53 mutations underlines the biological diversity between tumors arising from different anatomical regions in the head and neck region. Moreover, the Y220C mutation was by far the most prevalent TP53 mutation in HNSCC and a relative hotspot mutation in the oropharynx. (C) 2015 S. Karger AG, Base

    R560S : A class II CFTR mutation that is not rescued by current modulators

    No full text
    Background: New therapies modulating defective CFTR have started to hit the clinic and others are in trial or under development. The endeavour of drug discovery for CFTR protein rescue is however difficult one since over 2000 mutations have been reported. For most of these, especially the rare ones, the associated defects, the respective functional class and their responsiveness to available modulators are still unknown. Our aim here was to characterize the rare R560S mutation using patient-derived materials (rectal biopsies and intestinal organoids) from one CF individual homozygous for this mutation, in parallel with cellular models expressing R560S-CFTR and to assess the functional and biochemical responses to CFTR modulators. Methods: Intestinal organoids were prepared from rectal biopsies and analysed by RT-PCR (to assess CFTR mRNA), by Western blot (to assess CFTR protein) and by forskolin-induced swelling (FIS) assay. A novel cell line expressing R560S-CFTR was generated by stably transducing the CFBE parental cell line and used to assess R560S-CFTR processing and function. Both intestinal organoids and the cellular model were used to assess efficacy of CFTR modulators in rescuing this mutation. Results: Our results show that: R560S does not affect CFTR mRNA splicing; R560S affects CFTR protein processing, totally abrogating the production of its mature form; R560S-CFTR evidences no function as a Cl− channel; and none of the modulators tested rescued R560S-CFTR processing or function. Conclusion: Altogether, these results indicate that R560S is a class II mutation. However, unlike F508del, it cannot be rescued by any of the CFTR modulators tested

    R560S : A class II CFTR mutation that is not rescued by current modulators

    No full text
    Background: New therapies modulating defective CFTR have started to hit the clinic and others are in trial or under development. The endeavour of drug discovery for CFTR protein rescue is however difficult one since over 2000 mutations have been reported. For most of these, especially the rare ones, the associated defects, the respective functional class and their responsiveness to available modulators are still unknown. Our aim here was to characterize the rare R560S mutation using patient-derived materials (rectal biopsies and intestinal organoids) from one CF individual homozygous for this mutation, in parallel with cellular models expressing R560S-CFTR and to assess the functional and biochemical responses to CFTR modulators. Methods: Intestinal organoids were prepared from rectal biopsies and analysed by RT-PCR (to assess CFTR mRNA), by Western blot (to assess CFTR protein) and by forskolin-induced swelling (FIS) assay. A novel cell line expressing R560S-CFTR was generated by stably transducing the CFBE parental cell line and used to assess R560S-CFTR processing and function. Both intestinal organoids and the cellular model were used to assess efficacy of CFTR modulators in rescuing this mutation. Results: Our results show that: R560S does not affect CFTR mRNA splicing; R560S affects CFTR protein processing, totally abrogating the production of its mature form; R560S-CFTR evidences no function as a Cl− channel; and none of the modulators tested rescued R560S-CFTR processing or function. Conclusion: Altogether, these results indicate that R560S is a class II mutation. However, unlike F508del, it cannot be rescued by any of the CFTR modulators tested

    Strong inhibition of cholera toxin B subunit by affordable, polymer-based multivalent inhibitors

    No full text
    Cholera is a potentially fatal bacterial infection that affects a large number of people in developing countries. It is caused by the cholera toxin (CT), an AB 5 toxin secreted by Vibrio cholera. The toxin comprises a toxic A-subunit and a pentameric B-subunit that bind to the intestinal cell surface. Several monovalent and multivalent inhibitors of the toxin have been synthesized but are too complicated and expensive for practical use in developing countries. Meta-nitrophenyl α-galactoside (MNPG) is a known promising ligand for CT, and here mono- and multivalent compounds based on MNPG were synthesized. We present the synthesis of MNPG in greatly improved yields and its use while linked to a multivalent scaffold. We used economical polymers as multivalent scaffolds, namely, polyacrylamide, dextran, and hyperbranched polyglycerols (hPGs). Copper-catalyzed alkyne azide cycloaddition reaction (CuAAC) produced the inhibitors that were tested in an ELISA-type assay and an intestinal organoid swelling inhibition assay. The inhibitory properties varied widely depending on the type of polymer, and the most potent conjugates showed IC 50 values in the nanomolar range

    High-throughput functional assay in cystic fibrosis patient-derived organoids allows drug repurposing

    No full text
    Background Cystic fibrosis (CF) is a rare hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent therapies enable effective restoration of CFTR function of the most common F508del CFTR mutation. This shifts the unmet clinical need towards people with rare CFTR mutations such as nonsense mutations, of which G542X and W1282X are most prevalent. CFTR function measurements in patient-derived cell-based assays played a critical role in preclinical drug development for CF and may play an important role to identify new drugs for people with rare CFTR mutations. Methods Here, we miniaturised the previously described forskolin-induced swelling (FIS) assay in intestinal organoids from a 96-well to a 384-well plate screening format. Using this novel assay, we tested CFTR increasing potential of a 1400-compound Food and Drug Administration (FDA)-approved drug library in organoids from donors with W1282X/W1282X CFTR nonsense mutations. Results The 384-well FIS assay demonstrated uniformity and robustness based on coefficient of variation and Z’-factor calculations. In the primary screen, CFTR induction was limited overall, yet interestingly, the top five compound combinations that increased CFTR function all contained at least one statin. In the secondary screen, we indeed verified that four out of the five statins (mevastatin, lovastatin, simvastatin and fluvastatin) increased CFTR function when combined with CFTR modulators. Statin-induced CFTR rescue was concentration-dependent and W1282X-specific. Conclusions Future studies should focus on elucidating genotype specificity and mode-of-action of statins in more detail. This study exemplifies proof of principle of large-scale compound screening in a functional assay using patient-derived organoids

    A ‘catch-and-release’ receptor for the cholera toxin

    Get PDF
    Stimuli-responsive receptors for the recognition unit of the cholera toxin (CTB) have been prepared by attaching multiple copies of its natural carbohydrate ligand, the GM1 oligosaccharide, to a thermoresponsive polymer scaffold. Below their lower critical solution temperature (LCST), polymers complex CTB with nanomolar affinity. When heated above their LCST, polymers undergo a reversible coil to globule transition which renders a proportion of the carbohydrate recognition motifs inaccessible to CTB. This thermally-modulated decrease in the avidity of the material for the protein has been used to reversibly capture CTB from solution, enabling its convenient isolation from a complex mixture
    corecore