44 research outputs found

    Tumor-specific T cells signal tumor destruction via the lymphotoxin β receptor

    Get PDF
    BACKGROUND: Previously, we reported that adoptively transferred perforin k/o (PKO), and IFN-γ k/o (GKO), or perforin/IFN-γ double k/o (PKO/GKO) effector T cells mediated regression of B16BL6-D5 (D5) pulmonary metastases and showed that TNF receptor signaling played a critical role in mediating tumor regression. In this report we investigated the role of lymphotoxin-α (LT-α) as a potential effector molecules of tumor-specific effector T cells. METHODS: Effector T cells were generated from tumor vaccine-draining lymph node (TVDLN) of wt, GKO, LT-α deficient (LKO), or PKO/GKO mice and tested for their ability to mediate regression of D5 pulmonary metastases in the presence or absence of LT-βR-Fc fusion protein or anti-IFN-γ antibody. Chemokine production by D5 tumor cells was determined by ELISA, RT-PCR and Chemotaxis assays. RESULTS: Stimulated effector T cells from wt, GKO, or PKO/GKO mice expressed ligands for LT-β receptor (LT-βR). D5 tumor cells were found to constitutively express the LT-βR. Administration of LT-βR-Fc fusion protein completely abrogated the therapeutic efficacy of GKO or PKO/GKO but not wt effector T cells (p < 0.05). Consistent with this observation, therapeutic efficacy of effector T cells deficient in LT-α, was greatly reduced when IFN-γ production was neutralized. While recombinant LT-α1β2 did not induce apoptosis of D5 tumor cells in vitro, it induced secretion of chemokines by D5 that promoted migration of macrophages. CONCLUSION: The contribution of LT-α expression by effector T cells to anti-tumor activity in vivo was not discernable when wt effector T cells were studied. However, the contribution of LT-β R signaling was identified for GKO or PKO/GKO effector T cells. Since LT-α does not directly induce killing of D5 tumor cells in vitro, but does stimulate D5 tumor cells to secrete chemokines, these data suggest a model where LT-α expression by tumor-specific effector T cells interacts via cross-linking of the LT-βR on tumor cells to induce secretion of chemokines that are chemotactic for macrophages. While the contribution of macrophages to tumor elimination in our system requires additional study, this model provides a possible explanation for the infiltration of inate effector cells that is seen coincident with tumor regression

    The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases

    Get PDF
    Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes

    Testing for Homologous Recombination Repair or Homologous Recombination Deficiency for Poly (ADP-ribose) Polymerase Inhibitors: A Current Perspective

    Get PDF
    Poly (ADP-ribose) polymerase inhibitors (PARPis) have demonstrated clinical activity in patients with BRCA1 and/or BRCA2 mutated breast, ovarian, prostate, and pancreatic cancers. Notably, BRCA mutations are associated with defects in the homologous recombination repair (HRR) pathway. This homologous recombination deficiency (HRD) phenotype can also be observed as genomic instability in tumour cells. Accordingly, PARPi sensitivity has been observed in various tumours with HRD, independent of BRCA mutations. Currently, four PARPis are approved by regulatory agencies for the treatment of cancer across multiple tumour types. Most indications are specific to tumours with a confirmed BRCA mutation, mutations in other HRR-related genes, HRD evidenced by genomic instability, or evidence of platinum sensitivity. Regulatory agencies have also approved companion and complementary diagnostics to facilitate patient selection for each PARPi indication. This review aims to summarise the biological basis, clinical validation, and clinical relevance of the available diagnostic methods and assays to assess HRD

    Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study

    Get PDF
    PURPOSE: Pembrolizumab has previously shown antitumor activity against programmed death ligand 1 (PD-L1)-positive metastatic castration-resistant prostate cancer (mCRPC). Here, we assessed the antitumor activity and safety of pembrolizumab in three parallel cohorts of a larger mCRPC population. METHODS: The phase II KEYNOTE-199 study included three cohorts of patients with mCRPC treated with docetaxel and one or more targeted endocrine therapies. Cohorts 1 and 2 enrolled patients with RECIST-measurable PD-L1-positive and PD-L1-negative disease, respectively. Cohort 3 enrolled patients with bone-predominant disease, regardless of PD-L1 expression. All patients received pembrolizumab 200 mg every 3 weeks for up to 35 cycles. The primary end point was objective response rate per RECIST v1.1 assessed by central review in cohorts 1 and 2. Secondary end points included disease control rate, duration of response, overall survival (OS), and safety. RESULTS: Two hundred fifty-eight patients were enrolled: 133 in cohort 1, 66 in cohort 2, and 59 in cohort 3. Objective response rate was 5% (95% CI, 2% to 11%) in cohort 1 and 3% (95% CI, = 21.8 months) and 10.6 months (range, 4.4 to 16.8 months), respectively. Disease control rate was 10% in cohort 1, 9% in cohort 2, and 22% in cohort 3. Median OS was 9.5 months in cohort 1, 7.9 months in cohort 2, and 14.1 months in cohort 3. Treatment-related adverse events occurred in 60% of patients, were of grade 3 to 5 severity in 15%, and led to discontinuation of treatment in 5%. CONCLUSION: Pembrolizumab monotherapy shows antitumor activity with an acceptable safety profile in a subset of patients with RECIST-measurable and bone-predominant mCRPC previously treated with docetaxel and targeted endocrine therapy. Observed responses seem to be durable, and OS estimates are encouraging

    Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Get PDF
    Background: The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5) melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-gamma or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods: These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN), were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-gamma or TNF-alpha was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO) was determined using GRIES reagent. Results: We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1 alpha and MIP-1 beta following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-gamma or TNF-alpha, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC), MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin-deficient (PKO) effector T cells induced macrophages to secrete nitric oxide (NO), providing an additional effector mechanism for T cell-mediated tumor regression. Conclusion: These data suggest two possible sources for chemokine secretion that stimulates macrophage recruitment to the site of tumor metastases. Both appear to be initiated by T cell recognition of specific antigen, but one is dependent on the tumor cells to produce the chemokines that recruit macrophages
    corecore