29 research outputs found

    Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes.

    Get PDF
    Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP

    Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015

    Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways

    No full text
    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder caused by loss-of-function mutations in PKD1 or PKD2. Increased glycolysis is a prominent feature of the disease, but how it impacts on other metabolic pathways is unknown. Here, we present an analysis of mouse Pkd1 mutant cells and kidneys to investigate the metabolic reprogramming of this pathology. We show that loss of Pkd1 leads to profound metabolic changes that affect glycolysis, mitochondrial metabolism, and fatty acid synthesis (FAS). We find that Pkd1-mutant cells preferentially use glutamine to fuel the TCA cycle and to sustain FAS. Interfering with either glutamine uptake or FAS retards cell growth and survival. We also find that glutamine is diverted to asparagine via asparagine synthetase (ASNS). Transcriptional profiling of PKD1-mutant human kidneys confirmed these alterations. We find that silencing of Asns is lethal in Pkd1-mutant cells when combined with glucose deprivation, suggesting therapeutic approaches for ADPKD
    corecore