22 research outputs found

    Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin

    Get PDF
    Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation. In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of 125I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (Kd ~ 3.5 μM) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI- 1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1-vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization

    The Insulin-Like Growth Factor I Receptor Is Required for Akt Activation and Suppression of Anoikis in Cells Transformed by the ETV6-NTRK3 Chimeric Tyrosine Kinase

    No full text
    Signaling through the insulin-like growth factor I receptor (IGF-IR) axis is essential for transformation by many dominantly acting oncoproteins. However, the mechanism by which IGF-IR contributes to oncogenesis remains unknown. To examine this, we compared transformation properties of the oncogenic ETV6-NTRK3 (EN) chimeric tyrosine kinase in IGF-IR-null R(−) mouse embryo fibroblasts with R(−) cells engineered to reexpress IGF-IR (R(+) cells). We previously showed that R(−) cells expressing EN (R(−) EN cells) are resistant to transformation but that transformation is restored in R(+) cells. We now show that while R(−) EN cells have intact Ras-extracellular signal-regulated kinase signaling and cell cycle progression, they are defective in phosphatidylinositol-3-kinase (PI3K)-Akt activation and undergo detachment-induced apoptosis (anoikis) under anchorage-independent conditions. In contrast, R(+) cells expressing EN (R(+) EN cells) suppress anoikis and are fully transformed. The requirement for IGF-IR in R(−) EN cells is overcome by ectopic expression of either activated Akt or a membrane-targeted form of EN. Moreover, compared to R(−) EN cells, R(+) EN cells show a dramatic increase in membrane localization of insulin receptor substrate 1 (IRS-1) in association with EN. Since EN is known to bind IRS-1 as an adaptor protein, our findings suggest that IGF-IR may function to localize EN/IRS-1 complexes to cell membranes, in turn facilitating PI3K-Akt activation and suppression of anoikis
    corecore