57 research outputs found

    Mechanisms of proton-proton inelastic cross-section growth in multi-peripheral model within the framework of perturbation theory. Part 2

    Full text link
    We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application of the Laplace' method replace the integrand in the integral for the scattering amplitude in the vicinity of the maximum point by expression of Gaussian type. This in turn, allows one to overcome the computational difficulties for the calculation of the integrals expressing the cross section to sufficiently large numbers of particles. We have managed to overcome these problems in calculating the proton-proton inelastic cross-section for production (n \le 8) number of secondary particles in within the framework of \phi^3 model. As the result the obtained dependence of inelastic cross-section and total scattering cross-section on the energy \sqrt{s} are qualitative agrees with the experimental data. Such description of total cross-section behavior differs considerably from existing now description, where reggeons exchange with the intercept greater than unity is considered.Comment: 11 pages, 10 figures (v3: some inaccuracies corrected

    IVSPlat 1.0: an integrated virtual screening platform with a molecular graphical interface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The virtual screening (VS) of lead compounds using molecular docking and pharmacophore detection is now an important tool in drug discovery. VS tasks typically require a combination of several software tools and a molecular graphics system. Thus, the integration of all the requisite tools in a single operating environment could reduce the complexity of running VS experiments. However, only a few freely available integrated software platforms have been developed.</p> <p>Results</p> <p>A free open-source platform, IVSPlat 1.0, was developed in this study for the management and automation of VS tasks. We integrated several VS-related programs into a molecular graphics system to provide a comprehensive platform for the solution of VS tasks based on molecular docking, pharmacophore detection, and a combination of both methods. This tool can be used to visualize intermediate and final results of the VS execution, while also providing a clustering tool for the analysis of VS results. A case study was conducted to demonstrate the applicability of this platform.</p> <p>Conclusions</p> <p>IVSPlat 1.0 provides a plug-in-based solution for the management, automation, and visualization of VS tasks. IVSPlat 1.0 is an open framework that allows the integration of extra software to extend its functionality and modified versions can be freely distributed. The open source code and documentation are available at <url>http://kyc.nenu.edu.cn/IVSPlat/.</url></p

    Let’s not forget tautomers

    Get PDF
    A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments

    On equivalence of gluon-loop exchange in the inelastic processes in perturbative QCD to pion exchange in

    No full text
    We consider the hadron–hadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ɸ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplace’s method for the calculation of cross section of hadron–hadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ɸ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ɸ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadron–hadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism can’t emerge in any Regge-based model due to the premises on the particle kinematics, made in these models

    Gluon Loops in the Inelastic Processes in QCD

    No full text
    Sharf IV, Merkotan KK, Podolyan NA, et al. Gluon Loops in the Inelastic Processes in QCD. 2012.It is shown that inelastic process of the exchange with two massless gluonsis formally equivalent to the process of the exchange with one massiveparticle. Thus, using the Laplace's method, a new mechanism of mass generationin inelastic processes is discovered, which is described by the non-Abeliangauge theory. Furthermore, it is shown that in the QCD perturbation theory, thesame mechanisms of cross-sections growth take place, similar to the onesdiscovered before in the effective scalar theories
    corecore