38 research outputs found

    ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    Get PDF
    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy

    Supporting NASA Science with High-Altitude Long-Endurance Aircraft

    Get PDF
    NASA Earth Science and Aeronautics researchers have been involved in development and use of High Altitude Long Endurance (HALE) unmanned aircraft systems (UAS) since the 1990's. The NASA Environmental Research Aircraft Sensor and Technology Program (ERAST) demonstrated the promise of HALE aircraft for providing observations while also proving the importance of triple-redundant avionics to improve system reliability for large unmanned aircraft. Early efforts to develop an operational HALE capability for earth observations languished for nearly two decades owing to insufficient solar panel efficiency, battery power density, and light-weight, yet strong, materials. During this time NASA researchers focused on using the Global Hawk to demonstrate the utility of providing diurnal measurements over severe storms (ie. HS3) and to track stratospheric water vapor transport (ATTREX). Recent significant commercial investments are now leading to the realization of a long-held goal of week- to month-long sustained observations and measurements from the stratosphere. In addition to a historical review of NASA use and interest in HALE aircraft, this paper will present current concepts for exploiting current and planned HALE aircraft capabilities including in situ characterization of atmospheric composition and dynamics as well as imagery collection. NASA researchers anticipate HALE will provide a useful means to test smallsat instruments and components. Observations from HALE-based instruments might also provide useful gap-filler observations to flagship satellite missions where the repeat time doesn't allow for measurements of quickly changing phenomenon. HALE will likely also provide measurements and communications relay to facilitate other aircraft in multi-aircraft campaigns. We will also report on progress towards a NASA-funded flight test planned for summer 2019 of a solar-electric vehicle designed to carry 7kg (15lbs) for 30 days at 20km altitude

    Vertical Transport Rates in the Stratosphere in 1993 from Observations of CO2, N2O and CH4

    Get PDF
    Measurements of CO2, N2O and CH4 are analyzed to define hemispheric average vertical exchange rates in the lower stratosphere from November 1992 to October 1993. Effective vertical diffusion coefficients were small in summer, less than or equal to 1 m(exp 2)/sec at altitudes below 25 km; values were similar near the tropopause in winter, but increased markedly with altitude. The analysis suggests possibly longer residence times for exhaust from stratospheric aircraft, and more efficient transport from 20 km to the middle stratosphere, than predicted by many current models. Seasonally-resolved measurements of stratospheric CO2 and N2O provide significant new constraints on rates for global-scale vertical transport

    Emissions and topographic effects on column CO_2 (XCO_2) variations, with a focus on the Southern California Megacity

    Get PDF
    Within the California South Coast Air Basin (SoCAB), X_(CO)_2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. X_(CO)_2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin-background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory-2 (OCO-2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in X_(CO)_2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO_2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in X_(CO)_2 across the SoCAB as well

    Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity

    Full text link
    Within the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin‐background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory‐2 (OCO‐2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in XCO2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCO2 across the SoCAB as well.Plain Language SummaryCities persistently have elevated carbon dioxide (CO2) levels as compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one ground‐based) systems and vary with regional wind patterns throughout the year. In Pasadena, California, within the SoCAB, a significant fraction (about 25%) of variation in the column‐averaged CO2 can be explained by differences in surface altitude. This is important to understand so that all variations in column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.Key PointsIn the SoCAB, 20–36% of spatial variance in XCO2 is explained by topography on scales ≲10 kmIn Pasadena, XCO2 is enhanced by 2.3 ± 1.2 (1σ) ppm above background levels, at 1300 (UTC 8) with seasonal variationThe SoCAB XCO2 enhancement is in agreement for 3 different observation sets (TCCON, GOSAT, and OCO‐2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/1/jgrd53887.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/2/jgrd53887_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/3/jgrd53887-sup-0001-supinfo.pd

    Intercomparability of X_(CO_2) and X_(CH_4) from the United States TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) has become the standard for long-term column-averaged measurements of CO_2 and CH_4. Here, we use a pair of portable spectrometers to test for intra-network bias among the four currently operating TCCON sites in the United States (US). A previous analytical error analysis has suggested that the maximum 2σ site-to-site relative (absolute) bias of TCCON should be less than 0.2% (0.8ppm) in X_(CO_2) and 0.4% (7ppb) in X_(CH_4). We find here experimentally that the 95% confidence intervals for maximum pairwise site-to-site bias among the four US TCCON sites are 0.05–0.14% for X_(CO_2) and 0.08–0.24% for X_(CH_4). This is close to the limit of the bias we can detect using this methodology

    Using Airborne In-Situ Profiles to Evaluate TCCON Data from Armstrong Flight Research Center

    Get PDF
    A Fourier Transform Spectrometer (FTS) was deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON) and has now been in operation for over 3 years. The data record from AFRC will be presented as well as airborne validation profiles obtained during the NASA SEAC4RS, SARP, KORUS-AQ, and ATom missions utilizing various NASA aircraft. One of the reasons that the AFRC location was selected is due to its proximity to a highly reflective lakebed, which has proven to be difficult for accurate satellite retrievals. As such, the data from AFRC has been used for OCO-2 calibration. In order for accurate calibration of OCO-2, the validity of the TCCON measurements must be established. To this end, integrated airborne in-situ vertical profiles will be presented and compared with the TCCON FTS measurements, where good agreement has been found

    Educate to prevent: science-based materials on food hygiene and safety

    Get PDF
    Uma importante estratégia para a redução do impacto das doenças de origem alimentar é a prevenção e a promoção da saúde. A população escolar foi escolhida como público-alvo para aumentar a literacia para a saúde e promover práticas saudáveis e seguras relacionadas com os alimentos, através do projeto “Educar para Prevenir”. Foram produzidos e publicados materiais educativos para o público escolar e professores. Estes materiais, que compreendem três diferentes tipos de ferramentas, foram publicados como um kit. O desenvolvimento destes materiais baseou-se na recolha de dados de surtos de doenças de origem alimentar, de 2009 a 2013, do Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA). O risco de ocorrência e os fatores contributivos, bem como as boas práticas, foram identificados e usados como base para a elaboração dos materiais educativos. Adicionalmente, foram usados materiais da Organização Mundial da Saúde como o programa “Cinco Chaves para uma Alimentação Mais Segura”. Nas próximas etapas deste projeto serão produzidos novos materiais para estudantes contendo informação sobre a composição nutricional dos alimentos e a compreensão da rotulagem alimentar.An important strategy to reduce food borne diseases burden is prevention and health promotion. The student’s population was chosen as the target audience for improving health literacy and promoting healthy and safe practices relating to food trough the Project “Educar para Prevenir” (Education for Prevention). School educational materials on food safety, on teacher level, were developed and published, aiming the different school levels. These materials comprised 3 different kinds of tools were published as a kit. The development of these materials was based on data collected foodborne outbreaks from 2009 to 2013, at the National Institute of Health (INSA). The occurrence risk and contributing factors were identified as well as the good practices and were the basis for the elaboration of the educational materials. In addition, some World Health Organization materials, such as “Five Keys to Safer Food” programme, were used. On the next steps of the project include new materials for students will be produced, including information about nutritional composition of the food and understanding of the food labelling.info:eu-repo/semantics/publishedVersio

    Southern California megacity CO_2, CH_4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model

    Get PDF
    We estimate the overall CO_2, CH_4, and CO flux from the South Coast Air Basin using an inversion that couples Total Carbon Column Observing Network (TCCON) and Orbiting Carbon Observatory-2 (OCO-2) observations, with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the Open-source Data Inventory for Anthropogenic CO2 (ODIAC). Using TCCON data we estimate the direct net CO_2 flux from the SoCAB to be 104 ± 26 Tg CO_2 yr^(−1) for the study period of July 2013–August 2016. We obtain a slightly higher estimate of 120 ± 30 Tg CO)2 yr^(−1) using OCO-2 data. These CO_2 emission estimates are on the low end of previous work. Our net CH_4 (360 ± 90 Gg CH_4 yr^(−1)) flux estimate is in agreement with central values from previous top-down studies going back to 2010 (342–440 Gg CH_4 yr^(−1)). CO emissions are estimated at 487 ± 122 Gg CO yr^(−1), much lower than previous top-down estimates (1440 Gg CO yr^(−1)). Given the decreasing emissions of CO, this finding is not unexpected. We perform sensitivity tests to estimate how much errors in the prior, errors in the covariance, different inversion schemes, or a coarser dynamical model influence the emission estimates. Overall, the uncertainty is estimated to be 25 %, with the largest contribution from the dynamical model. Lessons learned here may help in future inversions of satellite data over urban areas
    corecore