21 research outputs found
Carbohydrate feeding and exercise recovery: effects on metabolism and performance
The importance of sufficient amounts of carbohydrates for optimal performance during endurance exercise is well established. However, it has been demonstrated that a high carbohydrate availability before, during and after training sessions could suppress molecular signalling pathways thought to be important for subsequent training adaptations and/or hinder training adaptations. In addition to that, evidence is inconclusive when it comes to the role of different monosaccharides during the short-term recovery after exhaustive exercise, i.e., how different monosaccharides affect recovery and metabolism during the subsequent exercise bout. The aim of this thesis was to uncover some of the pertaining questions in these areas.
The aim of the first study was to explore a novel approach to sleeping and training with reduced carbohydrate availability whereby carbohydrates are ingested with a delay during a subsequent morning exercise bout. It was found that delayed carbohydrate feeding during exercise following a sleep low approach to training did not supress high fat oxidation rates typically observed under conditions of low carbohydrate availability. However, performance outcomes of the study did not show any significant differences, but there was a trend towards rescuing some of the performance that was lost as a result of avoiding carbohydrates during the recovery.
The aim of the second study was to compare glucose only or fructose-glucose co-ingestion during the post-exercise recovery period on metabolism and performance during a subsequent exercise bout. Study results showed no performance benefits of fructose-glucose co-ingestion as compared to glucose only. However, the fructose-glucose combination led to higher oxidation rates of during recovery ingested carbohydrates during the subsequent exercise bout, hinting at increased whole-body post-exercise glycogen storage.
The final study’s aim was to investigate the efficacy of galactose ingestion alone or in combination with glucose during the recovery after glycogen reducing exercise on muscle glycogen synthesis, and metabolism during a subsequent exercise bout. Glucose was shown to be a superior source for post-exercise muscle glycogen repletion over galactose or a combination of galactose and glucose. Interestingly, galactose ingestion resulted in substantial replenishment of muscle glycogen stores similar to those observed with a moderate glucose intake (galactose-glucose combination) without a rise in glucose and insulin levels suggesting that there might be a mechanism for a direct conversion of galactose into glycogen in the muscle.
Collectively, the findings of the work contained within this thesis have successfully advanced the current knowledge in the area of sports nutrition and opened up new interesting questions that require further investigation
Power profiling and the power-duration relationship in cycling: a narrative review
[EN] Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individualize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, race demands). It is recommended that field testing should always be conducted in accordance with pre-established guidelines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W '/t + CP (W '-work capacity above CP; t-time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist's power profile.Open access funding provided by University of Innsbruck and Medical University of Innsbruck. No funding was received for the preparation of this manuscript
Exogenous glucose oxidation during exercise is positively related to body size:Body size and carbohydrate metabolism
There is little evidence that body size alters exogenous glucose oxidation rates during exercise. This study assessed whether larger people oxidize more exogenous glucose during exercise than smaller people. Fifteen cyclists were allocated into two groups based on body mass (SMALL, <70 kg body mass, n = 9, two females) or (LARGE, >70 kg body mass, n = 6) matched for lactate threshold (SMALL: 2.3 ± 0.4 W/kg, LARGE: 2.3 ± 0.3 W/kg). SMALL completed 120 min of cycling at 95% of lactate threshold1. LARGE completed two trials in a random order, one at 95% of lactate threshold1 (thereby exercising at the same relative intensity [RELATIVE]) and one at an absolute intensity matched to SMALL (ABSOLUTE). In all trials, cyclists ingested 90 g/hr of 13C-enriched glucose. Total exogenous glucose oxidation was (mean ± SD) 33 ± 8 g/hr in SMALL versus 45 ± 13 g/hr in LARGE-RELATIVE (mean difference: 13 g/hr, 95% confidence interval [2, 24] g/hr, p = .03). Large positive correlations were observed for measures of exogenous carbohydrate oxidation versus body size (body mass, height, and body surface area; e.g., body surface area vs. peak exogenous glucose oxidation, r = .85, 95% confidence interval [.51, .95], p < .01). When larger athletes reduced the intensity from RELATIVE to ABSOLUTE, total exogenous glucose oxidation was 39 ± 7 g/hr (p = .43 vs. LARGE-RELATIVE). In conclusion, the capacity for exogenous glucose oxidation is, on average, higher in larger athletes than smaller athletes during exercise. The extent to which this is due to higher absolute exercise intensity requires further research, but body size may be a consideration in tailoring sports nutrition guidelines for carbohydrate intake during exercise
Exogenous glucose oxidation during exercise is positively related to body size:Body size and carbohydrate metabolism
There is little evidence that body size alters exogenous glucose oxidation rates during exercise. This study assessed whether larger people oxidize more exogenous glucose during exercise than smaller people. Fifteen cyclists were allocated into two groups based on body mass (SMALL, <70 kg body mass, n = 9, two females) or (LARGE, >70 kg body mass, n = 6) matched for lactate threshold (SMALL: 2.3 ± 0.4 W/kg, LARGE: 2.3 ± 0.3 W/kg). SMALL completed 120 min of cycling at 95% of lactate threshold1. LARGE completed two trials in a random order, one at 95% of lactate threshold1 (thereby exercising at the same relative intensity [RELATIVE]) and one at an absolute intensity matched to SMALL (ABSOLUTE). In all trials, cyclists ingested 90 g/hr of 13C-enriched glucose. Total exogenous glucose oxidation was (mean ± SD) 33 ± 8 g/hr in SMALL versus 45 ± 13 g/hr in LARGE-RELATIVE (mean difference: 13 g/hr, 95% confidence interval [2, 24] g/hr, p = .03). Large positive correlations were observed for measures of exogenous carbohydrate oxidation versus body size (body mass, height, and body surface area; e.g., body surface area vs. peak exogenous glucose oxidation, r = .85, 95% confidence interval [.51, .95], p < .01). When larger athletes reduced the intensity from RELATIVE to ABSOLUTE, total exogenous glucose oxidation was 39 ± 7 g/hr (p = .43 vs. LARGE-RELATIVE). In conclusion, the capacity for exogenous glucose oxidation is, on average, higher in larger athletes than smaller athletes during exercise. The extent to which this is due to higher absolute exercise intensity requires further research, but body size may be a consideration in tailoring sports nutrition guidelines for carbohydrate intake during exercise
Brief cycling intervals incrementally increase the number of hematopoietic stem and progenitor cells in human peripheral blood
Introduction: Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect hematopoietic stem and progenitor cells (HSPCs) for hematopoietic stem cell transplantation. Single bouts of exercise transiently enrich peripheral blood with HSPCs and cytolytic natural killer cells (CD56dim), which are important in preventing post-transplant complications. To provide a rationale to investigate the utility of exercise in a PBSC donation setting (≈3 h), this study aimed to establish whether interval cycling increased peripheral blood HSPC and CD56dim concentrations to a greater degree than continuous cycling. Methods: In a randomised crossover study design, eleven males (mean ± SD: age 25 ± 7 years) undertook bouts of moderate intensity continuous exercise [MICE, 30 min, 65%–70% maximum heart rate (HRmax)], high-volume high intensity interval exercise (HV-HIIE, 4 × 4 min, 80%–85% HRmax) and low-volume HIIE (LV-HIIE, 4 × 2 min, 90%–95% HRmax). The cumulative impact of each interval on circulating HSPC (CD34+CD45dimSSClow) and CD56dim concentrations (cells/µL), and the bone marrow homing potential of HSPCs (expression of CXCR-4 and VLA-4) were determined. Results: There was an increase in HSPC concentration after two intervals of LV-HIIE (Rest: 1.84 ± 1.55 vs. Interval 2: 2.94 ± 1.34, P = 0.01) and three intervals of HV-HIIE only (Rest: 2.05 ± 0.86 vs. Interval 3: 2.51 ± 1.05, P = 0.04). The concentration of all leukocyte subsets increased after each trial, with this greatest for CD56dim NK cells, and in HIIE vs. MICE (LV-HIIE: 4.77 ± 2.82, HV-HIIE: 4.65 ± 2.06, MICE: 2.44 ± 0.77, P < 0.0001). These patterns were observed for concentration, not frequency of CXCR-4+ and VLA-4+ HSPCs, which was unaltered. There was a marginal decrease in VLA-4, but not CXCR-4 expression on exercise-mobilised HSPCs after all trials (P < 0.0001). Discussion: The results of the present study indicate that HIIE caused a more marked increase in HSPC and CD56dim NK cell concentrations than MICE, with mobilised HSPCs maintaining their bone marrow homing phenotype. LV-HIIE evoked an increase in HSPC concentration after just 2 × 2-minute intervals. The feasibility and clinical utility of interval cycling in a PBSC donation context should therefore be evaluated
Brief cycling intervals incrementally increase the number of hematopoietic stem and progenitor cells in human peripheral blood
IntroductionPeripheral blood stem cell (PBSC) donation is the primary procedure used to collect hematopoietic stem and progenitor cells (HSPCs) for hematopoietic stem cell transplantation. Single bouts of exercise transiently enrich peripheral blood with HSPCs and cytolytic natural killer cells (CD56dim), which are important in preventing post-transplant complications. To provide a rationale to investigate the utility of exercise in a PBSC donation setting (≈3 h), this study aimed to establish whether interval cycling increased peripheral blood HSPC and CD56dim concentrations to a greater degree than continuous cycling.MethodsIn a randomised crossover study design, eleven males (mean ± SD: age 25 ± 7 years) undertook bouts of moderate intensity continuous exercise [MICE, 30 min, 65%–70% maximum heart rate (HRmax)], high-volume high intensity interval exercise (HV-HIIE, 4 × 4 min, 80%–85% HRmax) and low-volume HIIE (LV-HIIE, 4 × 2 min, 90%–95% HRmax). The cumulative impact of each interval on circulating HSPC (CD34+CD45dimSSClow) and CD56dim concentrations (cells/µL), and the bone marrow homing potential of HSPCs (expression of CXCR-4 and VLA-4) were determined.ResultsThere was an increase in HSPC concentration after two intervals of LV-HIIE (Rest: 1.84 ± 1.55 vs. Interval 2: 2.94 ± 1.34, P = 0.01) and three intervals of HV-HIIE only (Rest: 2.05 ± 0.86 vs. Interval 3: 2.51 ± 1.05, P = 0.04). The concentration of all leukocyte subsets increased after each trial, with this greatest for CD56dim NK cells, and in HIIE vs. MICE (LV-HIIE: 4.77 ± 2.82, HV-HIIE: 4.65 ± 2.06, MICE: 2.44 ± 0.77, P < 0.0001). These patterns were observed for concentration, not frequency of CXCR-4+ and VLA-4+ HSPCs, which was unaltered. There was a marginal decrease in VLA-4, but not CXCR-4 expression on exercise-mobilised HSPCs after all trials (P < 0.0001).DiscussionThe results of the present study indicate that HIIE caused a more marked increase in HSPC and CD56dim NK cell concentrations than MICE, with mobilised HSPCs maintaining their bone marrow homing phenotype. LV-HIIE evoked an increase in HSPC concentration after just 2 × 2-minute intervals. The feasibility and clinical utility of interval cycling in a PBSC donation context should therefore be evaluated