24 research outputs found

    Monitoring the efficiency of iron chelation therapy: the potential of nontransferrin-bound iron.

    No full text
    The major ligands of nontransferrin-bound iron (NTBI) are suggested to be citrate and albumin. The proportion of iron binding to albumin is influenced by the degree of oxidation and glycation of the protein. LC-ICP-MS is demonstrated to be a useful technique for the speciation of NTBI, with unprocessed serum being subjected to analysis. Ferritin iron, citrate iron, and ferrioxamine can be quantified using this technique. This review describes the use of a new fluorescent probe for NTBI quantification

    Hypoxia Inducible Factor Signaling Modulates Susceptibility to Mycobacterial Infection via a Nitric Oxide Dependent Mechanism

    Get PDF
    Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis

    Co-infection of cattle with Fasciola hepatica or F. gigantica and Mycobacterium bovis: A systematic review

    Get PDF
    The liver flukes, Fasciola hepatica and F. gigantica, are common trematode parasites of livestock. F. hepatica is known to modulate the immune response, including altering the response to co-infecting pathogens. Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease which is difficult to control and is of both animal welfare and public health concern. Previous research has suggested that infection with liver fluke may affect the accuracy of the bTB skin test, but direction of the effect differs between studies. In a systematic review of the literature, all experimental and observational studies concerning co-infection with these two pathogens were sought. Data were extracted on the association between fluke infection and four measures of bTB diagnosis or pathology, namely, the bTB skin test, interferon γ test, lesion detection and culture/bacterial recovery. Of a large body of literature dating from 1950 to 2019, only thirteen studies met the inclusion criteria. These included studies of experimentally infected calves, case control studies on adult cows, cross sectional abattoir studies and a herd level study. All the studies had a medium or high risk of bias. The balance of evidence from the 13 studies included in the review suggests that liver fluke exposure was associated with either no effect or a decreased response to all of the four aspects of bTB diagnosis assessed: skin test, IFN γ, lesion detection and mycobacteria cultured or recovered. Most studies showed a small and/or non-significant effect so the clinical and practical importance of the observed effect is likely to be modest, although it could be more significant in particular groups of animals, such as dairy cattle

    Dynamic quantitative assays of phagosomal function

    No full text
    Much of the activity of the macrophage as an effector cell is performed within its phagocytic compartment. This ranges from the degradation of tissue debris as part of its homeostatic function, to the generation of the superoxide burst as part of its microbicidal response to infection. We have developed a range of real-time readouts of phagosomal function that enables these activities to be rigorously quantified. This chapter contains the description of several of these assays assessed by different methods of quantitation; including a Fluorescence Resonance Emission Transfer (FRET) assay for phagosome/lysosome fusion measured by spectrofluorometer, a fluorogenic assay for the superoxide burst measured by flow cytometry, and a fluorogenic assay for bulk proteolysis measure by confocal microscope. These assays illustrate both the range parameters that can be quantified as well as the flexibility of instrumentation that can be exploited for their quantitation

    No association between interferon-gamma receptor-1 gene polymorphism and pulmonary tuberculosis in a Gambian population sample

    No full text
    BACKGROUND Tuberculosis (TB) is a major global cause of mortality and morbidity, and host genetic factors influence disease susceptibility. Interferon-gamma mediates immunity to mycobacteria and rare mutations in the interferon-gamma receptor-1 gene (IFNGR1) result in increased susceptibility to mycobacterial infection, including TB, in affected families. The role of genetic variation in IFNGR1 in susceptibility to common mycobacterial diseases such as pulmonary TB in outbred populations has not previously been investigated. METHODS The association between IFNGR1 and susceptibility to pulmonary TB was investigated in a Gambian adult population sample using a case-control study design. The coding and promoter regions of IFNGR1 were sequenced in 32 patients with pulmonary TB, and the frequencies of six common IFNGR1 polymorphisms were determined using PCR based methods in 320 smear positive TB cases and 320 matched controls. Haplotypes were estimated from the genotype data using the expectation-maximisation algorithm. RESULTS There was no association between the IFNGR1 variants studied and TB in this Gambian population sample. Three common haplotypes were identified within the study population, none of which was associated with TB. CONCLUSIONS These data represent an important negative finding and suggest that, while IFNGR1 is implicated in rare Mendelian susceptibility to mycobacterial disease, the common variants studied here do not have a major influence on susceptibility to pulmonary TB in The Gambian population

    Leishmania infantum Induces Mild Unfolded Protein Response in Infected Macrophages

    No full text
    The Leishmaniases are a group of parasitic diseases caused by protozoa of the Leishmania genus affecting both humans and other vertebrates. Leishmania is an intracellular pathogen able to confer resistance to apoptosis in the early phase of macrophages infection by activation of host PI3K/Akt pathway and inhibition of caspase-3 activation. Intracellular pathogens hijack organelles such as ER to facilitate survival and replication, thus eliciting ER stress and activating/modulating the unfolded protein response (UPR) in the host cell. The UPR is aimed to mitigate ER stress, thereby promoting cell survival. However, prolonged ER stress will activate the apoptotic pathway. The aim of this study was to investigate the ER stress response in Leishmania-infected macrophages to gain insights about the mechanisms underlying the apoptosis resistance in parasitized cells. Macrophages differentiated from human monocytic cell lines (U937 and THP-1) and murine primary macrophages were infected with Leishmania infantum MHOM/TN/80/IPT1 (WHO international reference strain). Several ER stress/autophagy expression markers, as well as cell survival/apoptosis markers (phospho-Akt and cleaved caspase-3) were evaluated by qPCR and/or by western blotting. As ER stress positive control, cells were treated with tunicamycin or dithiothreitol (DTT). The gene expression analyses showed a mild but significant induction of the ER stress/autophagy markers. The western blot analyses revealed that the Leishmania infection induced Akt phosphorylation and significantly inhibited the induction of caspase-3 cleavage, eIF2α phosphorylation and DDIT3/CHOP expression in tunicamycin and DTT treated cells. The mild but significant increase in ER stress expression markers and the delay/attenuation of the effects of ER stress inducers in infected cells support the hypothesis that L. infantum could promote survival of host cells by inducing a mild ER stress response. The host ER stress response could be not only a common pathogenic mechanism among Leishmania species but also a target for development of new drugs
    corecore