18 research outputs found

    Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease.

    Get PDF
    Renal tissue hypoxia is a final pathway in the development and progression of chronic kidney disease (CKD), but whether renal oxygenation predicts renal function decline in humans has not been proven. Therefore, we performed a prospective study and measured renal tissue oxygenation by blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) in 112 patients with CKD, 47 with hypertension without CKD, and 24 healthy control individuals. Images were analyzed with the twelve-layer concentric objects method that divided the renal parenchyma in 12 layers of equal thickness and reports the mean R2* value of each layer (a high R2* corresponds to low oxygenation), along with the change in R2* between layers called the R2* slope. Serum creatinine values were collected to calculate the yearly change in estimated glomerular function rate (MDRD eGFR). Follow up was three years. The change in eGFR in CKD, hypertensive and control individuals was -2.0, 0.5 and -0.2 ml/min/1.73m <sup>2</sup> /year, respectively. In multivariable regression analysis adjusted for age, sex, diabetes, RAS-blockers, eGFR, and proteinuria the yearly eGFR change correlated negatively with baseline 24 hour proteinuria and the mean R2* value of the cortical layers, and positively with the R2* slope, but not with the other covariates. Patients with CKD and high outer R2* or a flat R2* slope were three times more likely to develop an adverse renal outcome (renal replacement therapy or over a 30% increase in serum creatinine). Thus, low cortical oxygenation is an independent predictor of renal function decline. This finding should stimulate studies exploring the therapeutic impact of improving renal oxygenation on renal disease progression

    Inhibition of hepadnaviral replication by polyethylenimine-based intravenous delivery of antisense phosphodiester oligodeoxynucleotides to the liver

    Get PDF
    Antisense oligodeoxynucleotides (ODNs) appear as attractive anti-hepatitis B virus (HBV) agents. We investigated in vivo, in the duck HBV (DHBV) infection model, whether linear polyethylenimine (lPEI)-based intravenous delivery of the natural antisense phosphodiester ODNs (O-ODNs) can prevent their degradation and allow viral replication inhibition in the liver. DHBV-infected Pekin ducklings were injected with antisense O-ODNs covering the initiation codon of the DHBV large envelope protein, either in free form (O-ODN-AS2) or coupled to lPEI (lPEI/O-ODN-AS2). Following optimization of lPEI/O-ODN complex formulation, complete O-ODN condensation into a homogenous population of small (20–60 nm) spherical particles was achieved. Flow cytometry analysis showed that lPEI-mediated transfer allowed the intrahepatic delivery of lPEI/O-ODN-AS2 to increase three-fold as compared with the O-ODN-AS2. Following 9-day therapy the intrahepatic levels of both DHBV DNA and RNA were significantly decreased in the lPEI/O-ODN-AS2-treated group as compared with the O-ODN-AS2-treated, control lPEI/O-ODN-treated, and untreated controls. In addition, inhibition of intrahepatic viral replication by lPEI/O-ODN-AS2 was not associated with toxicity and was comparable with that induced by the phosphorothioate S-ODN-AS2 at a five-fold higher dose. Taken together, our results demonstrate that phosphodiester antisense lPEI/O-ODN complexes specifically inhibit hepadnaviral replication. Therefore we provide here the first in vivo evidence that intravenous treatment with antisense phosphodiester ODNs coupled to lPEI can selectively block a viral disease-causing gene in the liver

    Novel Approaches to Inhibit HIV Entry

    Get PDF
    Human Immunodeficiency Virus (HIV) entry into target cells is a multi-step process involving binding of the viral glycoprotein, Env, to its receptor CD4 and a coreceptor—either CCR5 or CXCR4. Understanding the means by which HIV enters cells has led to the identification of genetic polymorphisms, such as the 32 base-pair deletion in the ccr5 gene (ccr5∆32) that confers resistance to infection in homozygous individuals, and has also resulted in the development of entry inhibitors—small molecule antagonists that block infection at the entry step. The recent demonstration of long-term control of HIV infection in a leukemic patient following a hematopoietic stem cell transplant using cells from a ccr5∆32 homozygous donor highlights the important role of the HIV entry in maintaining an established infection and has led to a number of attempts to treat HIV infection by genetically modifying the ccr5 gene. In this review, we describe the HIV entry process and provide an overview of the different classes of approved HIV entry inhibitors while highlighting novel genetic strategies aimed at blocking HIV infection at the level of entry

    Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases

    Get PDF
    HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals

    Therapy Garden -Study on the Example of the Rehabilitation Park in the Olympic Stadium in Wrocław

    No full text
    This paper describes the analysis and structuring of ways of proceeding and patterns of spatial-formal solutions of the rehabilitation park designed in terms to minimize its cost. Research groups were students of landscape architecture (University of Environmental and Life Sciences in Wroclaw) and Physiotherapy (College of Physical Education in Wroclaw) solving a real project problem -the concept of a rehabilitation park at the rehabilitation center and the Academy of Physical Education in the Olympic Stadium in Wroclaw. There were used in this work the analytical and synthetic methods - starting with an analysis of conditions and restrictions, diagnose of problems and determining the underlying assumptions, the possible lines of the project action were crystallized consolidating them into clear structures. The presented results of research and conceptual works of authors and research groups show that the primary factor influencing the structuring of the right directions of the spatial-program modeling of park with a rehabilitation function are not only targets of rehabilitation programs, but also the economic conditions - in this case the assumption of low-budget project that seemingly restricting possibilities of activities influenced as a result these activities clean-up and stimulated the responsible choices
    corecore