125 research outputs found

    Effect of the frozen-in magnetic field on the formation of Venus, plasma shell boundary: Experimental confirmation

    Get PDF
    A laboratory simulation of solar wind interaction with plasma shells of nonmagnetic planets is reported. It is shown that the momentum transfer from the plasma flow to the shell occurs due to the presence of a frozen-in magnetic field. Without a magnetic field frozen-in, the ionosphere has no sharp boundary and a shock wave does not form in the flow

    Solar flare and CME predictions using numerical MHD simulations

    Get PDF
    According to observational and theoretical data the solar flare radiation and coronal mass ejection(CME) are manifestations of the same explosive process, which takes place high in the solar corona. In some solar flares one of these manifestations can be weak and can not be observed, in other flares both of these manifestations are present. CMEs are the most important cause of substorm appearances in the magnetosphere. For solar flare and CME predictions, it is need to have information about main processes of these explosive phenomena and to estimate the possibility of their occurrences. The energy for solar flare can be accumulated in a current sheet. For MHD simulation of this process the program PERESVET is developed that uses observed distributions of magnetic field on the photosphere as the boundary conditions. The MHD simulation showed, that the current sheet can be vertical, horizontal, or inclined to some angles to the photosphere depending on the magnetic field distribution on the photosphere and its evolution. The vertical current sheet can produce the CME, because the magnetic tension force accelerates plasma from the Sun. The CME prognosis is based on information about the position of current sheet in the solar corona

    The mechanism of energy release and field-aligned current generation during substorms and solar flares

    Get PDF
    In this paper, the mechanisms of field-aligned current (FAC) and westward electrojet generation are considered on the base of space measurements and laboratory simulation. Upward and downward FAC are generated in the Earth magnetotail current sheet (CS) due to the tail earthward electric field. They are connected in the ionosphere by the Pedersen current. The FAC enhancement takes place during magnetic reconnection and explosive energy release at a substorm. Electron acceleration in upward FAC produces fast electron precipitation and aurora appearance. The westward electrojet (Hall current) is located between two opposite directed sheets of FAC. The current in the jet is determined by the Hall conductivity in the ionosphere. The similar current systems in the solar corona are responsible for energy transfer to the chromosphere during a solar flare. The solar flare model is built on the base of observations and 3D MHD numerical simulation for compressible resistive plasma

    Exchange Effects in the Invar Hardening: Fe0.65Ni0.35Fe_{0.65}Ni_{0.35} as a test case

    Full text link
    An increase of the critical resolved shear stress of Invar alloys (Invar hardening) with a lowering temperature is explained. The effect is caused by a growth of the exchange interaction between dangling dd-electron states of dislocation cores and paramagnetic obstacles (e.g., Ni atoms in FeNi alloys) which occurs below the Curie temperature. The spins of the two electrons align along the magnetization due to the exchange interaction with the surrounding atoms of the ferromagnetic. The exchange interaction between the dislocations and obstacles is enhanced in Invars due to a strong growth of the magnetic moments of atoms under the action of elastic strains near the dislocation cores. Parameters characterizing the exchange interaction are determined for the case of the Fe0.65_{0.65}Ni0.35_{0.35} Invar. The influence of the internal magnetic field on the dislocation detachment from the obstacles is taken into account. The obtained temperature dependence of the critical resolved shear stress in the Fe0.65_{0.65}Ni0.35_{0.35} Invar agrees well with the available experimental data. Experiments facilitating a further check of the theoretical model are suggested.Comment: 8 pages, 2 figure

    Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction

    Full text link
    Nearest and higher neighbor distances as well as bond length distributions (static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have been obtained from high real-space resolution atomic pair distribution functions (PDFs). Using this structural information, we modeled the local atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged probability distributions. This clearly shows that As atom displacements are highly directional and can be represented as a combination of and displacements. Examination of the Kirkwood model indicates that the standard deviation (sigma) of the static disorder on the (In,Ga) sublattice is around 60% of the value on the As sublattice and the (In,Ga) atomic displacements are much more isotropic than those on the As sublattice. The single crystal diffuse scattering calculated from the Kirkwood model shows that atomic displacements are most strongly correlated along directions.Comment: 10 pages, 12 figure

    Discovery of X-Ray Polarization from the Black Hole Transient Swift J1727.8−1613

    Get PDF
    \ua9 2023. The Author(s). Published by the American Astronomical Society.We report the first detection of the X-ray polarization of the bright transient Swift J1727.8−1613 with the Imaging X-ray Polarimetry Explorer. The observation was performed at the beginning of the 2023 discovery outburst, when the source resided in the bright hard state. We find a time- and energy-averaged polarization degree of 4.1% \ub1 0.2% and a polarization angle of 2.\ub02 \ub1 1.\ub03 (errors at 68% confidence level; this translates to ∼20σ significance of the polarization detection). This finding suggests that the hot corona emitting the bulk of the detected X-rays is elongated, rather than spherical. The X-ray polarization angle is consistent with that found in submillimeter wavelengths. Since the submillimeter polarization was found to be aligned with the jet direction in other X-ray binaries, this indicates that the corona is elongated orthogonal to the jet
    • …
    corecore