38 research outputs found
Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture
<p>Abstract</p> <p>Background</p> <p>Neuronal transduction by adeno-associated viral (AAV) vectors has been demonstrated in cortex, brainstem, cerebellum, and sensory ganglia. Intrathecal delivery of AAV serotypes that transduce neurons in dorsal root ganglia (DRG) and spinal cord offers substantial opportunities to 1) further study mechanisms underlying chronic pain, and 2) develop novel gene-based therapies for the treatment and management of chronic pain using a non-invasive delivery route with established safety margins. In this study we have compared expression patterns of AAV serotype 5 (AAV5)- and AAV serotype 8 (AAV8)-mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture.</p> <p>Results</p> <p>Intravenous mannitol pre-treatment significantly enhanced transduction of primary sensory neurons after direct lumbar puncture injection of AAV5 (rAAV5-GFP) or AAV8 (rAAV8-GFP) carrying the green fluorescent protein (GFP) gene. The presence of GFP in DRG neurons was consistent with the following evidence for primary afferent origin of the majority of GFP-positive fibers in spinal cord: 1) GFP-positive axons were evident in both dorsal roots and dorsal columns; and 2) dorsal rhizotomy, which severs the primary afferent input to spinal cord, abolished the majority of GFP labeling in dorsal horn. We found that both rAAV5-GFP and rAAV8-GFP appear to preferentially target large-diameter DRG neurons, while excluding the isolectin-B4 (IB4) -binding population of small diameter neurons. In addition, a larger proportion of CGRP-positive cells was transduced by rAAV5-GFP, compared to rAAV8-GFP.</p> <p>Conclusions</p> <p>The present study demonstrates the feasibility of minimally invasive gene transfer to sensory neurons using direct lumbar puncture and provides evidence for differential targeting of subtypes of DRG neurons by AAV vectors.</p
Inhibition of angiogenesis and suppression of colorectal cancer metastatic to the liver using the Sleeping Beauty Transposon System
<p>Abstract</p> <p>Background</p> <p>Metastatic colon cancer is one of the leading causes of cancer-related death worldwide, with disease progression and metastatic spread being closely associated with angiogenesis. We investigated whether an antiangiogenic gene transfer approach using the <it>Sleeping Beauty </it>(SB) transposon system could be used to inhibit growth of colorectal tumors metastatic to the liver.</p> <p>Results</p> <p>Liver CT26 tumor-bearing mice were hydrodynamically injected with different doses of a plasmid containing a transposon encoding an angiostatin-endostatin fusion gene (Statin AE) along with varying amounts of SB transposase-encoding plasmid. Animals that were injected with a low dose (10 μg) of Statin AE transposon plasmid showed a significant decrease in tumor formation only when co-injected with SB transposase-encoding plasmid, while for animals injected with a higher dose (25 μg) of Statin AE transposon, co-injection of SB transposase-encoding plasmid did not significantly affect tumor load. For animals injected with 10 μg Statin AE transposon plasmid, the number of tumor nodules was inversely proportional to the amount of co-injected SB plasmid. Suppression of metastases was further evident in histological analyses, in which untreated animals showed higher levels of tumor cell proliferation and tumor vascularization than animals treated with low dose transposon plasmid.</p> <p>Conclusion</p> <p>These results demonstrate that hepatic colorectal metastases can be reduced using antiangiogenic transposons, and provide evidence for the importance of the transposition process in mediating suppression of these tumors.</p
In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.
The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively
Luciferase expression allows bioluminescence imaging but imposes limitations on the orthotopic mouse (4T1) model of breast cancer
Funding Information: Experiments on the 4T1 and 4Tluc2D6 mouse models of breast cancer were supported by the Russian Scientific Foundation, grant 14-14-00882. MRI measurements were carried out on ClinScan 7T located at Center for Collective Usage (CKP) “Medical nanobiotechologies”, located in Russian National Research Medical University. Experiments on the optimization of protocols for DNA immunization were supported by the Russian Scientific Foundation grant 15-15-30039. Optimization of tumor challenge after DNA immunization was supported by the Russian Fund for Basic Research grant 17-04-00583. Participants were trained in the immunization and tumor challenge experiments in the frame of the European Union Twinning project VACTRAIN, grant agreement #692293, and Swedish Institute PI project 19806/2016. Maria Isaguliants and Stefan Petkov were supported by VACTRAIN, and Maria Isaguliants, also by BALTINFECT, grant agreement #316275. Athina Kilpeläinen was supported by the individual study grant of the Swedish Institute #19061/2014. Patrik Hort is gratefully acknowledged for the language editing. Natalia Belikova is gratefully acknowledged for help with the quantification of protein expression based on the exponential calibration curves. Publisher Copyright: © 2017 Nature Publishing Group. All rights reserved.Implantation of reporter-labeled tumor cells in an immunocompetent host involves a risk of their immune elimination. We have studied this effect in a mouse model of breast cancer after the orthotopic implantation of mammary gland adenocarcinoma 4T1 cells genetically labelled with luciferase (Luc). Mice were implanted with 4T1 cells and two derivative Luc-expressing clones 4T1luc2 and 4T1luc2D6 exhibiting equal in vitro growth rates. In vivo, the daughter 4T1luc2 clone exhibited nearly the same, and 4T1luc2D6, a lower growth rate than the parental cells. The metastatic potential of 4T1 variants was assessed by magnetic resonance, bioluminescent imaging, micro-computed tomography, and densitometry which detected 100-μm metastases in multiple organs and bones at the early stage of their development. After 3-4 weeks, 4T1 generated 11.4 ? 2.1, 4T1luc2D6, 4.5 ? 0.6; and 4T1luc2, 〈1 metastases per mouse, locations restricted to lungs and regional lymph nodes. Mice bearing Luc-expressing tumors developed IFN-? Response to the dominant CTL epitope of Luc. Induced by intradermal DNA-immunization, such response protected mice from the establishment of 4T1luc2-tumors. Our data show that natural or induced cellular response against the reporter restricts growth and metastatic activity of the reporter-labelled tumor cells. Such cells represent a powerful instrument for improving immunization technique for cancer vaccine applications.publishersversionPeer reviewe
A Broad Range of Dose Optima Achieve High-level, Long-term Gene Expression After Hydrodynamic Delivery of Sleeping Beauty Transposons Using Hyperactive SB100x Transposase
The Sleeping Beauty (SB) transposon system has been shown to enable long-term gene expression by integrating new sequences into host cell chromosomes. We found that the recently reported SB100x hyperactive transposase conferred a surprisingly high level of long-term expression after hydrodynamic delivery of luciferase-encoding reporter transposons in the mouse. We conducted dose-ranging studies to determine the effect of varying the amount of SB100x transposase-encoding plasmid (pCMV-SB100x) at a set dose of luciferase transposon and of varying the amount of transposon-encoding DNA at a set dose of pCMV-SB100x in hydrodynamically injected mice. Animals were immunosuppressed using cyclophosphamide in order to prevent an antiluciferase immune response. At a set dose of transposon DNA (25 µg), we observed a broad range of pCMV-SB100x doses (0.1–2.5 µg) conferring optimal levels of long-term expression (>1011 photons/second/cm2). At a fixed dose of 0.5 μg of pCMV-SB100x, maximal long-term luciferase expression (>1010 photons/second/cm2) was achieved at a transposon dose of 5–125 μg. We also found that in the linear range of transposon doses (100 ng), co-delivering the CMV-SB100x sequence on the same plasmid was less effective in achieving long-term expression than delivery on separate plasmids. These results show marked flexibility in the doses of SB transposon plus pCMV-SB100x that achieve maximal SB-mediated gene transfer efficiency and long-term gene expression after hydrodynamic DNA delivery to mouse liver
Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis
2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Recommended from our members
Role of transgene regulation in ex vivo lentiviral correction of artemis deficiency.
Artemis is a single-stranded endonuclease, deficiency of which results in a radiation-sensitive form of severe combined immunodeficiency (SCID-A) most effectively treated by allogeneic hematopoietic stem cell (HSC) transplantation and potentially treatable by administration of genetically corrected autologous HSCs. We previously reported cytotoxicity associated with Artemis overexpression and subsequently characterized the human Artemis promoter with the intention to provide Artemis expression that is nontoxic yet sufficient to support immunodevelopment. Here we compare the human Artemis promoter (APro) with the moderate-strength human phosphoglycerate kinase (PGK) promoter and the strong human elongation factor-1α (EF1α) promoter to regulate expression of Artemis after ex vivo lentiviral transduction of HSCs in a murine model of SCID-A. Recipient animals treated with the PGK-Artemis vector exhibited moderate repopulation of their immune compartment, yet demonstrated a defective proliferative T lymphocyte response to in vitro antigen stimulation. Animals treated with the EF1α-Artemis vector displayed high levels of T lymphocytes but an absence of B lymphocytes and deficient lymphocyte function. In contrast, ex vivo transduction with the APro-Artemis vector supported effective immune reconstitution to wild-type levels, resulting in fully functional T and B lymphocyte responses. These results demonstrate the importance of regulated Artemis expression in immune reconstitution of Artemis-deficient SCID