2,105 research outputs found

    Paradoxes in Fair Computer-Aided Decision Making

    Full text link
    Computer-aided decision making--where a human decision-maker is aided by a computational classifier in making a decision--is becoming increasingly prevalent. For instance, judges in at least nine states make use of algorithmic tools meant to determine "recidivism risk scores" for criminal defendants in sentencing, parole, or bail decisions. A subject of much recent debate is whether such algorithmic tools are "fair" in the sense that they do not discriminate against certain groups (e.g., races) of people. Our main result shows that for "non-trivial" computer-aided decision making, either the classifier must be discriminatory, or a rational decision-maker using the output of the classifier is forced to be discriminatory. We further provide a complete characterization of situations where fair computer-aided decision making is possible

    Scale-dependent angle of alignment between velocity and magnetic field fluctuations in solar wind turbulence

    Get PDF
    Under certain conditions, freely decaying magnetohydrodynamic (MHD) turbulence evolves in such a way that velocity and magnetic field fluctuations delta v and delta B approach a state of alignment in which delta v proportional to delta B. This process is called dynamic alignment. Boldyrev has suggested that a similar kind of alignment process occurs as energy cascades from large to small scales through the inertial range in strong incompressible MHD turbulence. In this study, plasma and magnetic field data from the Wind spacecraft, data acquired in the ecliptic plane near 1 AU, are employed to investigate the angle theta(tau) between velocity and magnetic field fluctuations in the solar wind as a function of the time scale tau of the fluctuations and to look for the scaling relation similar to tau(1/4) predicted by Boldyrev. We find that the angle appears to scale like a power law at large inertial range scales, but then deviates from power law behavior at medium to small inertial range scales. We also find that small errors in the velocity vector measurements can lead to large errors in the angle measurements at small time scales. As a result, we cannot rule out the possibility that the observed deviations from power law behavior arise from errors in the velocity measurements. When we fit the data from 2 x 10(3) s to 2 x 10(4) s with a power law of the form proportional to tau(p), our best fit values for p are in the range 0.27-0.36

    A new Fermi smearing approach for scattering of multi-GeV electrons by nuclei

    Full text link
    The cross section for electron scattering by nuclei at high momentum transfers is calculated within the Fermi smearing approximation (FSA), where binding effects on the struck nucleon are introduced via the relativistic Hartree approximation (RHA). The model naturally preserves current conservation, since the response tensor for an off-shell nucleon conserves the same form that for a free one but with an effective mass. Different parameterizations for the inelastic nucleon structure function, are analyzed. The smearing at the Fermi surface is introduced through a momentum distribution obtained from a perturbative nuclear matter calculation. Recent CEBAF data on inclusive scattering of 4.05 GeV electrons on 56^{56}Fe are well reproduced for all measured geometries for the first time, as is evident from the comparison with previous calculations.Comment: 8 pages in Revtex4 style, 6 eps figures, to appear in Physical Review

    Scale dependent alignment between velocity and magnetic field fluctuations in the solar wind and comparisons to Boldyrev's phenomenological theory

    Full text link
    (Abridged abstract) A theory of incompressible MHD turbulence recently developed by Boldyrev predicts the existence of a scale dependent angle of alignment between velocity and magnetic field fluctuations that is proportional to the lengthscale of the fluctuations to the power 1/4. In this study, plasma and magnetic field data from the Wind spacecraft are used to investigate the angle between velocity and magnetic field fluctuations in the solar wind as a function of the timescale of the fluctuations and to look for the power law scaling predicted by Boldyrev.Comment: Particle Acceleration and Transport in the Heliosphere and Beyond, 7th Annual International Astrophysics Conference, Kauai, Hawaii, G. Li, Q. Hu, O. Verkhoglyadova, G. P. Zank, R. P. Lin, J. Luhmann (eds), AIP Conference Proceedings 1039, 81-8

    Response Functions to Critical Shocks in Social Sciences: An Empirical and Numerical Study

    Full text link
    We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a policy, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing ``cracks'' because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases foreshadows a bifurcation. We complement our empirical work with numerical simulations of the response function (``damage spreading'') to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another

    Effect of FK506 in experimental organ transplantation.

    Get PDF
    FK506 is the most potent immunosuppressive agent known. Its toxicity is substantial in dogs, minor in rats, and unknown in subhuman primates. In small doses that are nontoxic even in dogs, it can be used in synergistic combination with cyclosporine, steroids, and presumably in other drugs

    Accurate estimation of third-order moments from turbulence measurements

    Get PDF
    Politano and Pouquet's law, a generalization of Kolmogorov's four-fifths law to incompressible MHD, makes it possible to measure the energy cascade rate in incompressible MHD turbulence by means of third-order moments. In hydrodynamics, accurate measurement of third-order moments requires large amounts of data because the probability distributions of velocity-differences are nearly symmetric and the third-order moments are relatively small. Measurements of the energy cascade rate in solar wind turbulence have recently been performed for the first time, but without careful consideration of the accuracy or statistical uncertainty of the required third-order moments. This paper investigates the statistical convergence of third-order moments as a function of the sample size N. It is shown that the accuracy of the third-moment depends on the number of correlation lengths spanned by the data set and a method of estimating the statistical uncertainty of the third-moment is developed. The technique is illustrated using both wind tunnel data and solar wind data.Comment: Submitted to: Nonlinear Processes in Geophysic

    Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    Full text link
    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observed density-parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is proposed comprised of a mixture of a critically balanced distribution of incompressible Alfvenic fluctuations and a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations. These results imply that there is little or no transfer of large scale turbulent energy through the inertial range down to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure

    Comparison of 3D flux-driven scrape-off layer turbulence simulations with gas-puff imaging of Alcator C-Mod inner-wall limited discharges

    Get PDF
    We carry out a quantitative comparison between gas-puff imaging (GPI) turbulence measurements in Alcator C-Mod inner-wall limited discharges (Zweben et al 2009 Phys. Plasmas 18 082505) and 3D flux-driven drift-reduced Braginskii turbulence simulations of scrape-off layer dynamics. The comparison is carried out for a series of inner-wall limited discharges where the magnetic field and the density are varied. The comparison between GPI data and non-linear simulations yields overall good agreement for several observables, such as the D-alpha emission levels and intermittency, the radial and poloidal correlation lengths and propagation velocities, and the power and frequency spectral density
    • …
    corecore