28 research outputs found

    RONIN Is an Essential Transcriptional Regulator of Genes Required for Mitochondrial Function in the Developing Retina

    Get PDF
    SummaryA fundamental principle governing organ size and function is the fine balance between cell proliferation and cell differentiation. Here, we identify RONIN (THAP11) as a key transcriptional regulator of retinal progenitor cell (RPC) proliferation. RPC-specific loss of Ronin results in a phenotype strikingly similar to that resulting from the G1- to S-phase arrest and photoreceptor degeneration observed in the Cyclin D1 null mutants. However, we determined that, rather than regulating canonical cell-cycle genes, RONIN regulates a cohort of mitochondrial genes including components of the electron transport chain (ETC), which have been recently implicated as direct regulators of the cell cycle. Coincidentally, with premature cell-cycle exit, Ronin mutants exhibited deficient ETC activity, reduced ATP levels, and increased oxidative stress that we ascribe to specific loss of subunits within complexes I, III, and IV. These data implicate RONIN as a positive regulator of mitochondrial gene expression that coordinates mitochondrial activity and cell-cycle progression

    Csf1r-mApple transgene expression and ligand binding in vivo reveal dynamics of CSF1R expression within the mononuclear phagocyte system

    Get PDF
    CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r-mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified Delta Csf1-enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r-driven reporter lines, Csf1r-mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double Delta Csf1r-ECFP-Csf1r-mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r-mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines

    Retinal horizontal cells: challenging paradigms of neural development and cancer biology

    No full text
    A group of retinal interneurons known as horizontal cells has recently been shown to exhibit a variety of unique biological properties, as compared with other nerve cells, that challenge many long-standing assumptions in the fields of neural development and cancer biology. These features include their unusual migratory behavior, their unique morphological plasticity, and their propensity to divide at a relatively late stage during development. Here, we review these novel features, discuss their relevance for other cell types, outline open questions in our understanding of horizontal cell development and consider their implications

    Live imaging of developing mouse retinal slices

    No full text
    Abstract Background Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. Results Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. Conclusions We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation

    The Hippo Pathway Blocks Mammalian Retinal Müller Glial Cell Reprogramming

    No full text
    Summary: In response to retinal damage, the Müller glial cells (MGs) of the zebrafish retina have the ability to undergo a cellular reprogramming event in which they enter the cell cycle and divide asymmetrically, thereby producing multipotent retinal progenitors capable of regenerating lost retinal neurons. However, mammalian MGs do not exhibit such a proliferative and regenerative ability. Here, we identify Hippo pathway-mediated repression of the transcription cofactor YAP as a core regulatory mechanism that normally blocks mammalian MG proliferation and cellular reprogramming. MG-specific deletion of Hippo pathway components Lats1 and Lats2, as well as transgenic expression of a Hippo non-responsive form of YAP (YAP5SA), resulted in dramatic Cyclin D1 upregulation, loss of adult MG identity, and attainment of a highly proliferative, progenitor-like cellular state. Our results reveal that mammalian MGs may have latent regenerative capacity that can be stimulated by repressing Hippo signaling. : Rueda et al. identify the Hippo pathway as an endogenous molecular mechanism normally preventing mammalian Müller glial reprogramming to a proliferative, progenitor-like state. Keywords: retina, Hippo pathway, reprogramming, Müller glia, YAP, LATS, regeneratio

    Improved Angiogenesis in Response to Localized Delivery of Macrophage-Recruiting Molecules

    No full text
    Successful engineering of complex organs requires improved methods to promote rapid and stable vascularization of artificial tissue scaffolds. Toward this goal, tissue engineering strategies utilize the release of pro-angiogenic growth factors, alone or in combination, from biomaterials to induce angiogenesis. In this study we have used intravital microscopy to define key, dynamic cellular changes induced by the release of pro-angiogenic factors from polyethylene glycol diacrylate hydrogels transplanted in vivo. Our data show robust macrophage recruitment when the potent and synergistic angiogenic factors, PDGFBB and FGF2 were used as compared with VEGF alone and intravital imaging suggested roles for macrophages in endothelial tip cell migration and anastomosis, as well as pericyte-like behavior. Further data from in vivo experiments show that delivery of CSF1 with VEGF can dramatically improve the poor angiogenic response seen with VEGF alone. These studies show that incorporating macrophage-recruiting factors into the design of pro-angiogenic biomaterial scaffolds is a key strategy likely to be necessary for stable vascularization and survival of implanted artificial tissues

    Development and Plasticity of Outer Retinal Circuitry Following Genetic Removal of Horizontal Cells

    No full text
    The present study examined the consequences of eliminating horizontal cells from the outer retina during embryogenesis upon the organization and assembly of the outer plexiform layer (OPL). Retinal horizontal cells exhibit a migration defect in Lim1-conditional knock-out (Lim1-CKO) mice and become mispositioned in the inner retina before birth, redirecting their dendrites into the inner plexiform layer. The resultant (mature) OPL, developing in the absence of horizontal cells, shows a retraction of rod spherules into the outer nuclear layer and a sprouting of rod bipolar cell dendrites to reach ectopic ribbon-protein puncta. Cone pedicles and the dendrites of type 7 cone bipolar cells retain their characteristic stratification and colocalization within the collapsed OPL, although both are atrophic and the spatial distribution of the pedicles is disrupted. Developmental analysis of Lim1-CKO retina reveals that components of the rod and cone pathways initially co-assemble within their normal strata in the OPL, indicating that horizontal cells are not required for the correct targeting of photoreceptor terminals or bipolar cell dendrites. As the rod spherules begin to retract during the second postnatal week, rod bipolar cells initially show no signs of ectopic growth, sprouting only subsequently and continuing to do so well after the eighth postnatal week. These results demonstrate the critical yet distinctive roles for horizontal cells on the rod and cone pathways and highlight a unique and as-yet-unrecognized maintenance function of an inhibitory interneuron that is not required for the initial targeting and co-stratification of other components in the circuit

    <i>FoxO1</i> mutant teeth deposit an enamel matrix and form enamel rods.

    No full text
    <p>Scanning electron microscopy of fractured 15 month old <i>FoxO1</i> mutant incisors revealed that, in regions where enamel had not chipped away, the mutant teeth initially had an enamel thickness that was comparable to their littermate controls (compare A and B). Higher magnification revealed that the mutant enamel also exhibited the typical decussating pattern of enamel rods (compare C and D).</p

    <i>FoxO1</i> mutant enamel is softer than controls.

    No full text
    <p>The Vickers microhardness test revealed that the adult <i>FoxO1</i> mutant teeth are significantly softer than their littermate controls.</p
    corecore