89 research outputs found

    Resonant and crossover phenomena in a multiband superconductor tuning the chemical potential near a band edge

    Full text link
    Resonances in the superconducting properties, in a regime of crossover from BCS to mixed Bose-Fermi superconductivity, are investigated in a two-band superconductor where the chemical potential is tuned near the band edge of the second mini-band generated by quantum confinement effects. The shape resonances at T=0 in the superconducting gaps (belonging to the class of Feshbach-like resonances) is manifested by interference effects in the superconducting gap at the first large Fermi surface when the chemical potential is in the proximity of the band edge of the second mini-band. The case of a superlattice of quantum wells is considered and the amplification of the superperconducting gaps at the 3D-2D Fermi surface topological transition is clearly shown. The results are found to be in good agreement with available experimental data on a superlattice of honeycomb boron layers intercalated by Al and Mg spacer layers.Comment: 13 pages, 9 image

    A model for the phase separation controlled by doping and the internal chemical pressure in different cuprate superconductors

    Full text link
    In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more localized (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO2_2 layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-TcT_c phase diagram of cuprates at large microstrain as it appears in overoxygenated La2_2CuO4_4.Comment: 8 pages, 5 figures, submitted to Phys. Rev.

    Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers

    Full text link
    The multigap superconductivity modulated by quantum confinement effects in a superlattice of quantum wells is presented. Our theoretical BCS approach captures the low-energy physics of a shape resonance in the superconducting gaps when the chemical potential is tuned near a Lifshitz transition. We focus on the case of weak Cooper-pairing coupling channels and strong pair exchange interaction driven by repulsive Coulomb interaction that allows to use the BCS theory in the weak-coupling regime neglecting retardation effects like in quantum condensates of ultracold gases. The calculated matrix element effects in the pairing interaction are shown to yield a complex physics near the particular quantum critical points due to Lifshitz transitions in multigap superconductivity. Strong deviations of the ratio 2Δ/Tc2\Delta/T_c from the standard BCS value as a function of the position of the chemical potential relative to the Lifshitz transition point measured by the Lifshitz parameter are found. The response of the condensate phase to the tuning of the Lifshitz parameter is compared with the response of ultracold gases in the BCS-BEC crossover tuned by an external magnetic field. The results provide the description of the condensates in this regime where matrix element effects play a key role.Comment: 12 pages, 6 figure

    Interferon-α Improves Phosphoantigen-Induced Vγ9Vδ2 T-Cells Interferon-γ Production during Chronic HCV Infection

    Get PDF
    In chronic HCV infection, treatment failure and defective host immune response highly demand improved therapy strategies. Vγ9Vδ2 T-cells may inhibit HCV replication in vitro through IFN-γ release after Phosphoantigen (PhAg) stimulation. The aim of our work was to analyze Vγ9Vδ2 T-cell functionality during chronic HCV infection, studying the role of IFN-α on their function capability. IFN-γ production by Vγ9Vδ2 T-cells was analyzed in vitro in 24 HCV-infected patients and 35 healthy donors (HD) after PhAg stimulation with or without IFN-α. The effect of in vivo PhAg/IFN-α administration on plasma IFN-γ levels was analyzed in M. fascicularis monkeys. A quantitative analysis of IFN-γ mRNA level and stability in Vγ9Vδ2 T-cells was also evaluated. During chronic HCV infection, Vγ9Vδ2 T-cells showed an effector/activated phenotype and were significantly impaired in IFN-γ production. Interestingly, IFN-α was able to improve their IFN-γ response to PhAg both in vitro in HD and HCV-infected patients, and in vivo in Macaca fascicularis primates. Finally, IFN-α increased IFN-γ-mRNA transcription and stability in PhAg-activated Vγ9Vδ2 T-cells. Altogether our results show a functional impairment of Vγ9Vδ2 T-cells during chronic HCV infection that can be partially restored by using IFN-α. A study aimed to evaluate the antiviral impact of PhAg/IFN-α combination may provide new insight in designing possible combined strategies to improve HCV infection treatment outcome

    Superstripes and complexity in high-temperature superconductors

    Full text link
    While for many years the lattice, electronic and magnetic complexity of high-temperature superconductors (HTS) has been considered responsible for hindering the search of the mechanism of HTS now the complexity of HTS is proposed to be essential for the quantum mechanism raising the superconducting critical temperature. The complexity is shown by the lattice heterogeneous architecture: a) heterostructures at atomic limit; b) electronic heterogeneity: multiple components in the normal phase; c) superconducting heterogeneity: multiple superconducting gaps in different points of the real space and of the momentum space. The complex phase separation forms an unconventional granular superconductor in a landscape of nanoscale superconducting striped droplets which is called the "superstripes" scenario. The interplay and competition between magnetic orbital charge and lattice fluctuations seems to be essential for the quantum mechanism that suppresses thermal decoherence effects at an optimum inhomogeneity.Comment: 20 pages, 3 figures; J. Supercon. Nov. Mag. 201

    Immune control of HIV-1 infection after therapy interruption: immediate versus deferred antiretroviral therapy

    Get PDF
    Abstract Background The optimal stage for initiating antiretroviral therapies in HIV-1 bearing patients is still a matter of debate. Methods We present computer simulations of HIV-1 infection aimed at identifying the pro et contra of immediate as compared to deferred Highly Active Antiretroviral Therapy (HAART). Results Our simulations highlight that a prompt specific CD8+ cytotoxic T lymphocytes response is detected when therapy is delayed. Compared to very early initiation of HAART, in deferred treated patients CD8+ T cells manage to mediate the decline of viremia in a shorter time and, at interruption of therapy, the virus experiences a stronger immune pressure. We also observe, however, that the immunological effects of the therapy fade with time in both therapeutic regimens. Thus, within one year from discontinuation, viral burden recovers to the value at which it would level off in the absence of therapy. In summary, simulations show that immediate therapy does not prolong the disease-free period and does not confer a survival benefit when compared to treatment started during the chronic infection phase. Conclusion Our conclusion is that, since there is no therapy to date that guarantees life-long protection, deferral of therapy should be preferred in order to minimize the risk of adverse effects, the occurrence of drug resistances and the costs of treatment.</p

    Effects of 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) and Rosiglitazone on Human Vδ2+ T Cells

    Get PDF
    BACKGROUND:Thiazolidinediones (TZD) class of drugs, and 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2) are immune regulators predicted to modulate human autoimmune disease. Their effects on gammadelta T cells, which are involved in animal model and human and animal autoimmune diseases, are unknown. METHODOLOGY/PRINCIPAL FINDINGS:We characterized the activity of rosiglitazone (from the TZD class of drugs) and 15d-PGJ2 in human Vdelta2 T cells. We found that 15d-PGJ2 and rosiglitazone had different effects on Vdelta2 T cell functions. Both 15d-PGJ2 and rosiglitazone suppressed Vdelta2 T cell proliferation in response to IPP and IL2. However, only 15d-PGJ2 suppressed functional responses including cytokine production, degranulation and cytotoxicity against tumor cells. The mechanism for 15d-PGJ2 effects on Vdelta2 T cells acts through inhibiting Erk activation. In contrast, rosiglitazone did not affect Erk activation but the IL2 signaling pathway, which accounts for rosiglitazone suppression of IL2-dependent, Vdelta2 T cell proliferation without affecting TCR-dependent functions. Rosiglitazone and 15d-PGJ2 are designed to be peroxisome proliferator-activated receptor gamma (PPARgamma) ligands and PPARgamma was expressed in Vdelta2 T cell. Surprisingly, when PPARgamma levels were lowered by specific siRNA, 15d-PGJ2 and rosiglitazone were still active, suggesting their target of action induces cellular proteins other than PPARgamma. CONCLUSIONS/SIGNIFICANCE:The current findings expand our understanding of how the immune system is regulated by rosiglitazone and 15d-PGJ2 and will be important to evaluate these compounds as therapeutic agents in human autoimmune disease
    corecore