Resonances in the superconducting properties, in a regime of crossover from
BCS to mixed Bose-Fermi superconductivity, are investigated in a two-band
superconductor where the chemical potential is tuned near the band edge of the
second mini-band generated by quantum confinement effects. The shape resonances
at T=0 in the superconducting gaps (belonging to the class of Feshbach-like
resonances) is manifested by interference effects in the superconducting gap at
the first large Fermi surface when the chemical potential is in the proximity
of the band edge of the second mini-band. The case of a superlattice of quantum
wells is considered and the amplification of the superperconducting gaps at the
3D-2D Fermi surface topological transition is clearly shown. The results are
found to be in good agreement with available experimental data on a
superlattice of honeycomb boron layers intercalated by Al and Mg spacer layers.Comment: 13 pages, 9 image