213 research outputs found

    Strain accommodation through facet matching in La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4}/Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} ramp-edge junctions

    Get PDF
    Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85_\text{1.85}Ce0.15_\text{0.15}CuO4_\text{4} and superconducting hole-doped La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85_\text{1.85}Sr0.15_\text{0.15}CuO4_\text{4} with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.Comment: 5 pages, 4 figures & 3 pages supplemental information with 2 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APL Mat. 3, 086101 (2015) and may be found at http://dx.doi.org/10.1063/1.492779

    Direct observation of nanoscale interface phase in the superconducting chalcogenide Kx_{x}Fe2−y_{2-y}Se2_2 with intrinsic phase separation

    Get PDF
    We have used scanning micro x-ray diffraction to characterize different phases in superconducting Kx_{x}Fe2−y_{2-y}Se2_2 as a function of temperature, unveiling the thermal evolution across the superconducting transition temperature (Tc∼_c\sim32 K), phase separation temperature (Tps∼_{ps}\sim520 K) and iron-vacancy order temperature (Tvo∼_{vo}\sim580 K). In addition to the iron-vacancy ordered tetragonal magnetic phase and orthorhombic metallic minority filamentary phase, we have found a clear evidence of the interface phase with tetragonal symmetry. The metallic phase is surrounded by this interface phase below ∼\sim300 K, and is embedded in the insulating texture. The spatial distribution of coexisting phases as a function of temperature provides a clear evidence of the formation of protected metallic percolative paths in the majority texture with large magnetic moment, required for the electronic coherence for the superconductivity. Furthermore, a clear reorganization of iron-vacancy order around the Tps_{ps} and Tc_c is found with the interface phase being mostly associated with a different iron-vacancy configuration, that may be important for protecting the percolative superconductivity in Kx_{x}Fe2−y_{2-y}Se2_2.Comment: 6 pages, 4 figure

    Magnetic monopoles and superinsulation in Josephson junction arrays

    Get PDF
    Electric-magnetic duality or S-duality, extending the symmetry of Maxwell's equations by including the symmetry between Noether electric charges and topological magnetic monopoles, is one of the most fundamental concepts of modern physics. In two-dimensional systems harboring Cooper pairs, S-duality manifests in the emergence of superinsulation, a state dual to superconductivity, which exhibits an infinite resistance at finite temperatures. The mechanism behind this infinite resistance is the linear charge confinement by a magnetic monopole plasma. This plasma constricts electric field lines connecting the charge-anti-charge pairs into electric strings, in analogy to quarks within hadrons. Yet the origin of the monopole plasma remains an open question. Here we consider a two-dimensional Josephson junction array (JJA) and reveal that the magnetic monopole plasma arises as quantum instantons, thus establishing the underlying mechanism of superinsulation as two-dimensional quantum tunneling events. We calculate the string tension and the dimension of an electric pion determining the minimal size of a system capable of hosting superinsulation. Our findings pave the way for study of fundamental S-duality in desktop experiments on JJA and superconducting films.Comment: 10 pages, 1 figur

    Lymphocyte distribution and intrahepatic compartmentalization during HCV infection: a main role for MHC-unrestricted T cells

    Get PDF
    Hepatitis C virus (HCV) infection induces an acute and chronic liver inflammation through an immune-mediated pathway that may lead to cirrhosis and liver failure. Indeed, HCV-related hepatitis is characterized by a dramatic lymphocyte infiltrate into the liver which is mainly composed by HCV non-specific cells. Several data indicated that interferon (IFN)-gamma secretion by intrahepatic lymphocytes (IHL) may drive non-specific cell homing to the liver, inducing interferon inducible protein-10 (IP-10) production. An interesting hallmark of these IHL is the recruitment of lymphocytes associated with mechanisms of innate immunity, such as natural killer (NK), natural killer T (NKT) and gamma delta T lymphocytes. CD81 triggering on NK cell surface by the HCV envelope glycoprotein E2 was recently shown to inhibit NK cell function in the liver of HCV-infected persons, resulting in a possible mechanism contributing to the lack of virus clearance and to the establishment of chronic infection. In contrast, intrahepatic NKT cells restricted to CD1d molecules expressed on the hepatocyte surface may contribute to a large extent to liver damage. Finally, an increased frequency of T cells expressing the gamma delta T cell receptor (TCR) was observed in HCV-infected liver and recent observations indicate that intrahepatic gamma delta T cell activation could be directly induced by the HCV/E2 particle through CD81 triggering. These cells are not HCV specific, are able to kill target cells including primary hepatocytes and their ability to produce T helper (Th)1 cytokines is associated with a higher degree of liver disease. Together, CD1d/NKT and/or E2/CD81 interactions may play a major role in the establishment of HCV immunopathogenesis. In the absence of virus clearance, the chemokine-driven recruitment of lymphocytes with an innate cytotoxic behavior in the liver of HCV-infected patients may boost itself, leading to necroinflammatory and fibrotic liver disease

    Critical behavior at the dynamic Mott transition

    Get PDF
    RevTex4, 9 pages, 5 figuresRevTex4, 9 pages, 5 figuresWe investigate magnetoresistance of a square array of superconducting islands placed on a normal metal, which offers a unique tunable laboratory for realizing and exploring quantum many-body systems and their dynamics. A vortex Mott insulator where magnetic field-induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion interaction is discovered. We find an insulator-to-metal transition driven by the applied electric current and determine critical exponents that exhibit striking similarity with the common thermodynamic liquid-gas transition. A simple and straightforward quantum mechanical picture is proposed that describes both tunneling dynamics in the deep insulating state and the observed scaling behavior in the vicinity of the critical point. Our findings offer a comprehensive description of dynamic Mott critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions

    Interferon-α Improves Phosphoantigen-Induced Vγ9Vδ2 T-Cells Interferon-γ Production during Chronic HCV Infection

    Get PDF
    In chronic HCV infection, treatment failure and defective host immune response highly demand improved therapy strategies. Vγ9Vδ2 T-cells may inhibit HCV replication in vitro through IFN-γ release after Phosphoantigen (PhAg) stimulation. The aim of our work was to analyze Vγ9Vδ2 T-cell functionality during chronic HCV infection, studying the role of IFN-α on their function capability. IFN-γ production by Vγ9Vδ2 T-cells was analyzed in vitro in 24 HCV-infected patients and 35 healthy donors (HD) after PhAg stimulation with or without IFN-α. The effect of in vivo PhAg/IFN-α administration on plasma IFN-γ levels was analyzed in M. fascicularis monkeys. A quantitative analysis of IFN-γ mRNA level and stability in Vγ9Vδ2 T-cells was also evaluated. During chronic HCV infection, Vγ9Vδ2 T-cells showed an effector/activated phenotype and were significantly impaired in IFN-γ production. Interestingly, IFN-α was able to improve their IFN-γ response to PhAg both in vitro in HD and HCV-infected patients, and in vivo in Macaca fascicularis primates. Finally, IFN-α increased IFN-γ-mRNA transcription and stability in PhAg-activated Vγ9Vδ2 T-cells. Altogether our results show a functional impairment of Vγ9Vδ2 T-cells during chronic HCV infection that can be partially restored by using IFN-α. A study aimed to evaluate the antiviral impact of PhAg/IFN-α combination may provide new insight in designing possible combined strategies to improve HCV infection treatment outcome

    Pinning of stripes by local structural distortions in cuprate high-Tc superconductors

    Full text link
    We study the spin-density wave (stripe) instability in lattices with mixed low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal symmetry. Within an explicit mean-field model it is shown how local LTT regions act as pinning centers for static stripe formation. We calculate the modulations in the local density of states near these local stripe regions and find that mainly the coherence peaks and the van Hove singularity (VHS) are spatially modulated. Lastly, we use the real-space approach to simulate recent tunneling data in the overdoped regime where the VHS has been detected by utilizing local normal state regions.Comment: Conference proceedings for Stripes1

    Scaling universality at the dynamic vortex Mott transition

    Get PDF
    The cleanest way to observe a dynamic Mott insulator-to-metal transition (DMT) without the interference from disorder and other effects inherent to electronic and atomic systems, is to employ the vortex Mott states formed by superconducting vortices in a regular array of pinning sites. Here, we report the critical behavior of the vortex system as it crosses the DMT line, driven by either current or temperature. We find universal scaling with respect to both, expressed by the same scaling function and characterized by a single critical exponent coinciding with the exponent for the thermodynamic Mott transition. We develop a theory for the DMT based on the parity reflection-time reversal (PT) symmetry breaking formalism and find that the nonequilibrium-induced Mott transition has the same critical behavior as the thermal Mott transition. Our findings demonstrate the existence of physical systems in which the effect of a nonequilibrium drive is to generate an effective temperature and hence the transition belonging in the thermal universality class

    Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers

    Full text link
    The multigap superconductivity modulated by quantum confinement effects in a superlattice of quantum wells is presented. Our theoretical BCS approach captures the low-energy physics of a shape resonance in the superconducting gaps when the chemical potential is tuned near a Lifshitz transition. We focus on the case of weak Cooper-pairing coupling channels and strong pair exchange interaction driven by repulsive Coulomb interaction that allows to use the BCS theory in the weak-coupling regime neglecting retardation effects like in quantum condensates of ultracold gases. The calculated matrix element effects in the pairing interaction are shown to yield a complex physics near the particular quantum critical points due to Lifshitz transitions in multigap superconductivity. Strong deviations of the ratio 2Δ/Tc2\Delta/T_c from the standard BCS value as a function of the position of the chemical potential relative to the Lifshitz transition point measured by the Lifshitz parameter are found. The response of the condensate phase to the tuning of the Lifshitz parameter is compared with the response of ultracold gases in the BCS-BEC crossover tuned by an external magnetic field. The results provide the description of the condensates in this regime where matrix element effects play a key role.Comment: 12 pages, 6 figure

    Two-bands superconductivity with intra- and interband pairing for synthetic superlattices

    Full text link
    We consider a model for superconductivity in a two-band superconductor, having an anisotropic electronic structure made of two partially overlapping bands with a first hole-like and a second electron-like fermi surface. In this pairing scenario, driven by the interplay between interband Vi,jV_{i,j} and intraband Vi,iV_{i,i} pairing terms, we have solved the two gap equations at the critical temperature T=TcT = T_c and calculate TcT_c and the chemical potential μ\mu as a function of the number of carriers nn for various values of pairing interactions, V1,1V_{1,1}, V2,2V_{2,2}, and V1,2V_{1,2}. The results show the complexity of the physics of condensates with multiple order parameters with the chemical potential near band edges.Comment: 6 pages, 2 figure
    • …
    corecore