8 research outputs found

    Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia

    Get PDF
    The observed ozone layer depletion is influenced by continuous anthropogenic activity. This fact enforced the regular ozone monitoring globally. Information on spatial-temporal variations in total ozone columns (TOCs) derived by various observational methods and models can differ significantly due to measurement and modelling errors, differences in ozone retrieval algorithms, etc. Therefore, TOC data derived by different means should be validated regularly. In the current study, we compare TOC variations observed by ground-based (Bruker IFS 125 HR, Dobson, and M-124) and satellite (OMI, TROPOMI, and IKFS-2) instruments and simulated by models (ERA5 and EAC4 re-analysis, EMAC and INM RAS—RSHU models) near St. Petersburg (Russia) between 2009 and 2020. We demonstrate that TOC variations near St. Petersburg measured by different methods are in good agreement (with correlation coefficients of 0.95–0.99). Mean differences (MDs) and standard deviations of differences (SDDs) with respect to Dobson measurements constitute 0.0–3.9% and 2.3–3.7%, respectively, which is close to the actual requirements of the quality of TOC measurements. The largest bias is observed for Bruker 125 HR (3.9%) and IKFS-2 (−2.4%) measurements, whereas M-124 filter ozonometer shows no bias. The largest SDDs are observed for satellite measurements (3.3–3.7%), the smallest—for ground-based data (2.3–2.8%). The differences between simulated and Dobson data vary significantly. ERA5 and EAC4 re-analysis data show slight negative bias (0.1–0.2%) with SDDs of 3.7–3.9%. EMAC model overestimates Dobson TOCs by 4.5% with 4.5% SDDs, whereas INM RAS-RSHU model underestimates Dobson by 1.4% with 8.6% SDDs. All datasets demonstrate the pronounced TOC seasonal cycle with the maximum in spring and minimum in autumn. Finally, for 2004–2021 period, we derived a significant positive TOC trend near St. Petersburg (~0.4 ± 0.1 DU per year) from all datasets considered

    Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019

    Get PDF
    Global climate change is one of the most important scientific, societal and economic contemporary challenges. Fundamental understanding of the major processes driving climate change is the key problem which is to be solved not only on a global but also on a regional scale. The accuracy of regional climate modelling depends on a number of factors. One of these factors is the adequate and comprehensive information on the anthropogenic impact which is highest in industrial regions and areas with dense population – modern megacities. Megacities are not only “heat islands”, but also significant sources of emissions of various substances into the atmosphere, including greenhouse and reactive gases. In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was conducted within the St. Petersburg agglomeration (Russia) aiming to estimate the emission intensity of greenhouse (CO2_{2}, CH4_{4}) nd reactive (CO, NOx_{x}) gases for St. Petersburg, which is the largest northern megacity. St. Petersburg State University (Russia), Karlsruhe Institute of Technology (Germany) and the University of Bremen (Germany) jointly ran this experiment. The core instruments of the campaign were two portable Bruker EM27/SUN Fourier transform infrared (FTIR) spectrometers which were used for ground-based remote sensing measurements of the total column amount of CO2_{2}, CH4_{4} and CO at upwind and downwind locations on opposite sides of the city. The NO2_{2} tropospheric column amount was observed along a circular highway around the city by continuous mobile measurements of scattered solar visible radiation with an OceanOptics HR4000 spectrometer using the differential optical absorption spectroscopy (DOAS) technique. Simultaneously, air samples were collected in air bags for subsequent laboratory analysis. The air samples were taken at the locations of FTIR observations at the ground level and also at altitudes of about 100 m when air bags were lifted by a kite (in case of suitable landscape and favourable wind conditions). The entire campaign consisted of 11 mostly cloudless days of measurements in March–April 2019. Planning of measurements for each day included the determination of optimal location for FTIR spectrometers based on weather forecasts, combined with the numerical modelling of the pollution transport in the megacity area. The real-time corrections of the FTIR operation sites were performed depending on the actual evolution of the megacity NOx_{x} plume as detected by the mobile DOAS observations. The estimates of the St. Petersburg emission intensities for the considered greenhouse and reactive gases were obtained by coupling a box model and the results of the EMME observational campaign using the mass balance approach. The CO2_{2} emission flux for St. Petersburg as an area source was estimated to be 89 ± 28 ktkm2^{-2} yr 2^{-2} , which is 2 times higher than the corresponding value in the EDGAR database. The experiment revealed the CH4_{4} emission flux of 135 ± 68 tkm 2^{-2} yr 1^{-1}, which is about 1 order of magnitude greater than the value reported by the official inventories of St. Petersburg emissions (∼ 25 tkm2^{-2} yr 1^{-1} or 2017). At the same time, for the urban territory of St. Petersburg, both the EMME experiment and the official inventories for 2017 give similar results for the CO anthropogenic flux (251 ± 104 tkm 2^{-2} yr 1^{-1} s. 410 tkm 2^{-2} yr 1^{-1}) nd for the NOx_{x} anthropogenic flux (66 ± 28 tkm2^{-2} yr 1^{-1} vs. 69 tkm 2^{-2} yr 1^{-1})

    NDACC harmonized formaldehyde time-series from 21 FTIR stations covering a wide range of column abundances

    Get PDF
    Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12 % and 27 % and between 1 and 11×1014 molec cm−2, respectively. The median values among all stations are 13 % and 2.9×1014 molec cm−2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec cm−2) to highly polluted levels (7×1016 molec cm−2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.This study has been supported by the ESA PRODEX project TROVA (2016–2018) funded by the Belgian Science Policy Office (Belspo)

    NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances

    Get PDF
    Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12% and 27% and between 1 and 11x1014 moleccm-2, respectively. The median values among all stations are 13% and 2.9x1014 moleccm-2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013moleccm-2) to highly polluted levels (7x1016moleccm-2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions

    Measurements and Modelling of Total Ozone Columns near St. Petersburg, Russia

    No full text
    The observed ozone layer depletion is influenced by continuous anthropogenic activity. This fact enforced the regular ozone monitoring globally. Information on spatial-temporal variations in total ozone columns (TOCs) derived by various observational methods and models can differ significantly due to measurement and modelling errors, differences in ozone retrieval algorithms, etc. Therefore, TOC data derived by different means should be validated regularly. In the current study, we compare TOC variations observed by ground-based (Bruker IFS 125 HR, Dobson, and M-124) and satellite (OMI, TROPOMI, and IKFS-2) instruments and simulated by models (ERA5 and EAC4 re-analysis, EMAC and INM RAS-RSHU models) near St. Petersburg (Russia) between 2009 and 2020. We demonstrate that TOC variations near St. Petersburg measured by different methods are in good agreement (with correlation coefficients of 0.95-0.99). Mean differences (MDs) and standard deviations of differences (SDDs) with respect to Dobson measurements constitute 0.0-3.9% and 2.3-3.7%, respectively, which is close to the actual requirements of the quality of TOC measurements. The largest bias is observed for Bruker 125 HR (3.9%) and IKFS-2 (-2.4%) measurements, whereas M-124 filter ozonometer shows no bias. The largest SDDs are observed for satellite measurements (3.3-3.7%), the smallest-for ground-based data (2.3-2.8%). The differences between simulated and Dobson data vary significantly. ERA5 and EAC4 re-analysis data show slight negative bias (0.1-0.2%) with SDDs of 3.7-3.9%. EMAC model overestimates Dobson TOCs by 4.5% with 4.5% SDDs, whereas INM RAS-RSHU model underestimates Dobson by 1.4% with 8.6% SDDs. All datasets demonstrate the pronounced TOC seasonal cycle with the maximum in spring and minimum in autumn. Finally, for 2004-2021 period, we derived a significant positive TOC trend near St. Petersburg (similar to 0.4 +/- 0.1 DU per year) from all datasets considered.ISSN:2072-429

    Detection and Attribution of Wildfire Pollution in the Arctic and Northern Mid-latitudes using a Network of FTIR Spectrometers and GEOS-Chem

    Full text link
    We present a multi-year time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fourier transform infrared (FTIR) spectrometers at ten sites affiliated with the Network for Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Alesund, Thule, Kiruna, Poker Flat, and St. Petersburg , and four are mid-latitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the inter-annual trends and seasonal variabilities of the CO time series are accounted for, allowing ambient concentrations to be determined. Enhancements above ambient levels were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution, while complementary measurements of aerosol optical depth from nearby AERONET sites confirm the presence of wildfire smoke. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFAS) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003–2018. The influence of the various wildfire sources is found to differ between sites while North American and Asian boreal wildfires fires were found to be the greatest contributors to episodic CO enhancements in the summertime at all sites

    Interkulturelle Mitarbeiterführung

    Get PDF
    2020 Copernicus GmbH. All rights reserved. We present a multiyear time series of column abundances of carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) measured using Fouriertransform infrared (FTIR) spectrometers at 10 sites affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). Six are high-latitude sites: Eureka, Ny-Alesund, Thule, Kiruna, Poker Flat, and St. Petersburg, and four are midlatitude sites: Zugspitze, Jungfraujoch, Toronto, and Rikubetsu. For each site, the interannual trends and seasonal variabilities of the CO time series are accounted for, allowing background column amounts to be determined. Enhancements above the seasonal background were used to identify possible wildfire pollution events. Since the abundance of each trace gas emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. A GEOS-Chem tagged CO simulation with Global Fire Assimilation System (GFASv1.2) biomass burning emissions was used to determine the source attribution of CO concentrations at each site from 2003 to 2018. For each detected wildfire pollution event, FLEXPART back-Trajectory simulations were performed to determine the transport times of the smoke plume. Accounting for the loss of each species during transport, the enhancement ratios of HCN and C2H6 with respect to CO were converted to emission ratios. We report mean emission ratios with respect to CO for HCN and C2H6 of 0.0047 and 0.0092, respectively, with a standard deviation of 0.0014 and 0.0046, respectively, determined from 23 boreal North American wildfire events. Similarly, we report mean emission ratios for HCN and C2H6 of 0.0049 and 0.0100, respectively, with a standard deviation of 0.0025 and 0.0042, respectively, determined from 39 boreal Asian wildfire events. The agreement of our emission ratios with literature values illustrates the capability of ground-based FTIR measurements to quantify biomass burning emissions. We provide a comprehensive dataset that quantifies HCN and C2H6 emission ratios from 62 wildfire pollution events. Our dataset provides novel emission ratio estimates, which are sparsely available in the published literature, particularly for boreal Asian sources
    corecore