1,726 research outputs found

    Imaging Methods of Concrete Structure Based on Impact-Echo Test

    Get PDF

    Effectiveness of influenza vaccination in patients with end-stage renal disease receiving hemodialysis: a population-based study.

    Get PDF
    BackgroundLittle is known on the effectiveness of influenza vaccine in ESRD patients. This study compared the incidence of hospitalization, morbidity, and mortality in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD) between cohorts with and without influenza vaccination.MethodsWe used the insurance claims data from 1998 to 2009 in Taiwan to determine the incidence of these events within one year after influenza vaccination in the vaccine (N = 831) and the non-vaccine (N = 3187) cohorts. The vaccine cohort to the non-vaccine cohort incidence rate ratio and hazard ratio (HR) of morbidities and mortality were measured.ResultsThe age-specific analysis showed that the elderly in the vaccine cohort had lower hospitalization rate (100.8 vs. 133.9 per 100 person-years), contributing to an overall HR of 0.81 (95% confidence interval (CI) 0.72-0.90). The vaccine cohort also had an adjusted HR of 0.85 [95% CI 0.75-0.96] for heart disease. The corresponding incidence of pneumonia and influenza was 22.4 versus 17.2 per 100 person-years, but with an adjusted HR of 0.80 (95% CI 0.64-1.02). The vaccine cohort had lowered risks than the non-vaccine cohort for intensive care unit (ICU) admission (adjusted HR 0.20, 95% CI 0.12-0.33) and mortality (adjusted HR 0.50, 95% CI 0.41-0.60). The time-dependent Cox model revealed an overall adjusted HR for mortality of 0.30 (95% CI 0.26-0.35) after counting vaccination for multi-years.ConclusionsESRD patients with HD receiving the influenza vaccination could have reduced risks of pneumonia/influenza and other morbidities, ICU stay, hospitalization and death, particularly for the elderly

    Electronic band structures of Ge1−xSnx semiconductors: A first-principles density functional theory study

    Get PDF
    [[abstract]]We conduct first-principles total-energy density functional calculations to study the band structures in Ge 1− x Sn x infrared semiconductor alloys. The norm-conserving optimized pseudopotentials of Ge and Sn have been constructed for electronic structure calculations. The composition-bandgap relationships in Ge 1−x Sn x lattices are evaluated by a detailed comparison of structural models and their electronic band structures. The critical Sn composition related to the transition from indirect- to direct-gap in Ge 1−x Sn x alloys is estimated to be as low as x∼ 0.016 determined from the parametric fit. Our results show that the crossover Sn concentration occurs at a lower critical Sn concentration than the values predicted from the absorption measurements. However, early results indicate that the reliability of the critical Sn concentration from such measurements is hard to establish, since the indirect gap absorption is much weaker than the direct gap absorption. We find that the direct band gap decreases exponentially with the Sn composition over the range 0 0.375, in very good agreement with the theoretical observed behavior [D. W. Jenkins and J. D. Dow, Phys. Rev. B 36, 7994, 1987]. For homonuclear and heteronuclear complexes of Ge 1−x Sn x alloys, the indirect band gap at L-pointis is found to decrease homonuclear Ge-Ge bonds or increase homonuclear Sn-Sn bonds as a result of the reduced L valley. All findings agree with previously reported experimental and theoretical results. The analysis suggests that the top of valence band exhibits the localization of bond charge and the bottom of the conduction band is composed of the Ge 4s4p and/or Sn 5s5p atomic orbits.[[booktype]]紙本[[booktype]]電子

    Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    Get PDF
    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K

    Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    Get PDF
    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa

    Fabrication of Wireless Micro Pressure Sensor Using the CMOS Process

    Get PDF
    In this study, we fabricated a wireless micro FET (field effect transistor) pressure sensor based on the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The wireless micro pressure sensor is composed of a FET pressure sensor, an oscillator, an amplifier and an antenna. The oscillator is adopted to generate an ac signal, and the amplifier is used to amplify the sensing signal of the pressure sensor. The antenna is utilized to transmit the output voltage of the pressure sensor to a receiver. The pressure sensor is constructed by 16 sensing cells in parallel. Each sensing cell contains an MOS (metal oxide semiconductor) and a suspended membrane, which the gate of the MOS is the suspended membrane. The post-process employs etchants to etch the sacrificial layers in the pressure sensor for releasing the suspended membranes, and a LPCVD (low pressure chemical vapor deposition) parylene is adopted to seal the etch holes in the pressure. Experimental results show that the pressure sensor has a sensitivity of 0.08 mV/kPa in the pressure range of 0–500 kPa and a wireless transmission distance of 10 cm

    Bacteremia Caused by Group G Streptococci, Taiwan

    Get PDF
    A retrospective observational study in Taiwan, 1998–2004, identified 92 patients with group G streptococcal bacteremia; 86 had Streptococcus dysgalactiae subspecies equisimilis. The most common diagnosis was cellulitis (48 cases), followed by primary bacteremia (34 cases). Infection recurred in 9 patients. Mortality rate was low (3.3%); resistance to quinupristin-dalfopristin was high

    Renal Protection for Coronary Angiography in Advanced Renal Failure Patients by Prophylactic Hemodialysis A Randomized Controlled Trial

    Get PDF
    ObjectivesWe performed a study to determine whether prophylactic hemodialysis reduces contrast nephropathy (CN) after coronary angiography in advanced renal failure patients.BackgroundPre-existing renal failure is the greatest risk factor for CN. Hemodialysis can effectively remove contrast media, but its effect upon preventing CN is still uncertain.MethodsEighty-two patients with chronic renal failure, referred for coronary angiography, were assigned randomly to receive either normal saline intravenously and prophylactic hemodialysis (dialysis group; n = 42) or fluid supplement only (control group; n = 40).ResultsProphylactic hemodialysis lessened the decrease in creatinine clearance within 72 h in the dialysis group (0.4 ± 0.9 ml/min/1.73 m2vs. 2.2 ± 2.8 ml/min/1.73 m2; p < 0.001). Compared with the dialysis group, the serum creatinine concentrations in the control group were significantly higher at day 4 (6.3 ± 2.3 mg/dl vs. 5.1 ± 1.3 mg/dl; p = 0.010) and at peak level (6.7 ± 2.7 mg/dl vs. 5.3 ± 1.5 mg/dl; p = 0.005). Temporary renal replacement therapy was required in 35% of the control patients and in 2% of the dialysis group (p < 0.001). Thirteen percent of the control patients, but none of the dialysis patients, required long-term dialysis after discharge (p = 0.018). For the patients not requiring chronic dialysis, 13 patients in the control group (37%) and 2 in the dialysis group (5%) had an increase in serum creatinine concentration at discharge of more than 1 mg/dl from baseline (p < 0.001).ConclusionsProphylactic hemodialysis is effective in improving renal outcome in chronic renal failure patients undergoing coronary angiography
    corecore