16,219 research outputs found

    Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses

    Get PDF
    We investigate the relationship between the structure of a discrete graphical model and the support of the inverse of a generalized covariance matrix. We show that for certain graph structures, the support of the inverse covariance matrix of indicator variables on the vertices of a graph reflects the conditional independence structure of the graph. Our work extends results that have previously been established only in the context of multivariate Gaussian graphical models, thereby addressing an open question about the significance of the inverse covariance matrix of a non-Gaussian distribution. The proof exploits a combination of ideas from the geometry of exponential families, junction tree theory and convex analysis. These population-level results have various consequences for graph selection methods, both known and novel, including a novel method for structure estimation for missing or corrupted observations. We provide nonasymptotic guarantees for such methods and illustrate the sharpness of these predictions via simulations.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1162 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity

    Get PDF
    Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependence, as well. We study these issues in the context of high-dimensional sparse linear regression, and propose novel estimators for the cases of noisy, missing and/or dependent data. Many standard approaches to noisy or missing data, such as those using the EM algorithm, lead to optimization problems that are inherently nonconvex, and it is difficult to establish theoretical guarantees on practical algorithms. While our approach also involves optimizing nonconvex programs, we are able to both analyze the statistical error associated with any global optimum, and more surprisingly, to prove that a simple algorithm based on projected gradient descent will converge in polynomial time to a small neighborhood of the set of all global minimizers. On the statistical side, we provide nonasymptotic bounds that hold with high probability for the cases of noisy, missing and/or dependent data. On the computational side, we prove that under the same types of conditions required for statistical consistency, the projected gradient descent algorithm is guaranteed to converge at a geometric rate to a near-global minimizer. We illustrate these theoretical predictions with simulations, showing close agreement with the predicted scalings.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1018 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evolutionary strategy search algorithm for fast block motion estimation

    Get PDF
    The evolutionary strategy search (ESS) algorithm is a novel method for implementing fast block motion estimation (ME) using evolutionary strategy (ES). ESS uses a combination of ideas based on existing search strategies and employs a novel (1þsl) ES implementation. It is essentially a succession of random searches, but by controlling the placement and distribution of these searches in a simple way, it proves possible to achieve comparable motion vector accuracy to the more established ME strategies, but with enhanced convergence speed

    Dynamics of clusters: From elementary to biological structures

    Get PDF
    Between isolated atoms or molecules and bulk materials there lies a class of unique structures, known as clusters, that consist of a few to hundreds of atoms or molecules. Within this range of "nanophase," many physical and chemical properties of the materials evolve as a function of cluster size, and materials may exhibit novel properties due to quantum confinement effects. Understanding these phenomena is in its own rights fundamental, but clusters have the additional advantage of being controllable model systems for unraveling the complexity of condensed-phase and biological structures, not to mention their vanguard role in defining nanoscience and nanotechnology. Over the last two decades, much progress has been made, and this short overview highlights our own involvement in developing cluster dynamics, from the first experiments on elementary systems to model systems in the condensed phase, and on to biological structures

    An asymmetrical synchrotron model for knots in the 3C 273 jet

    Full text link
    To interpret the emission of knots in the 3C 273 jet from radio to X-rays, we propose a synchrotron model in which, owing to the shock compression effect, the injection spectra from a shock into the upstream and downstream emission regions are asymmetric. Our model could well explain the spectral energy distributions of knots in the 3C 273 jet, and predictions regarding the knots spectra could be tested by future observations.Comment: 9 pages, 1 figure, 1 table, new version accepted for publication in Ap
    • …
    corecore