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High-Dimensional Regression With Noisy and Missing Data: Provable
Guarantees With Nonconvexity

Abstract
Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in
an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependence, as well.
We study these issues in the context of high-dimensional sparse linear regression, and propose novel
estimators for the cases of noisy, missing and/or dependent data. Many standard approaches to noisy or
missing data, such as those using the EM algorithm, lead to optimization problems that are inherently
nonconvex, and it is difficult to establish theoretical guarantees on practical algorithms. While our approach
also involves optimizing nonconvex programs, we are able to both analyze the statistical error associated with
any global optimum, and more surprisingly, to prove that a simple algorithm based on projected gradient
descent will converge in polynomial time to a small neighborhood of the set of all global minimizers. On the
statistical side, we provide nonasymptotic bounds that hold with high probability for the cases of noisy,
missing and/or dependent data. On the computational side, we prove that under the same types of conditions
required for statistical consistency, the projected gradient descent algorithm is guaranteed to converge at a
geometric rate to a near-global minimizer. We illustrate these theoretical predictions with simulations,
showing close agreement with the predicted scalings.
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HIGH-DIMENSIONAL REGRESSION WITH NOISY AND MISSING
DATA: PROVABLE GUARANTEES WITH NONCONVEXITY

BY PO-LING LOH1,2 AND MARTIN J. WAINWRIGHT2

University of California, Berkeley

Although the standard formulations of prediction problems involve fully-
observed and noiseless data drawn in an i.i.d. manner, many applications in-
volve noisy and/or missing data, possibly involving dependence, as well. We
study these issues in the context of high-dimensional sparse linear regression,
and propose novel estimators for the cases of noisy, missing and/or dependent
data. Many standard approaches to noisy or missing data, such as those using
the EM algorithm, lead to optimization problems that are inherently noncon-
vex, and it is difficult to establish theoretical guarantees on practical algo-
rithms. While our approach also involves optimizing nonconvex programs,
we are able to both analyze the statistical error associated with any global
optimum, and more surprisingly, to prove that a simple algorithm based on
projected gradient descent will converge in polynomial time to a small neigh-
borhood of the set of all global minimizers. On the statistical side, we pro-
vide nonasymptotic bounds that hold with high probability for the cases of
noisy, missing and/or dependent data. On the computational side, we prove
that under the same types of conditions required for statistical consistency, the
projected gradient descent algorithm is guaranteed to converge at a geomet-
ric rate to a near-global minimizer. We illustrate these theoretical predictions
with simulations, showing close agreement with the predicted scalings.

1. Introduction. In standard formulations of prediction problems, it is as-
sumed that the covariates are fully-observed and sampled independently from
some underlying distribution. However, these assumptions are not realistic for
many applications, in which covariates may be observed only partially, observed
subject to corruption or exhibit some type of dependency. Consider the problem of
modeling the voting behavior of politicians: in this setting, votes may be missing
due to abstentions, and temporally dependent due to collusion or “tit-for-tat” be-
havior. Similarly, surveys often suffer from the missing data problem, since users
fail to respond to all questions. Sensor network data also tends to be both noisy due
to measurement error, and partially missing due to failures or drop-outs of sensors.
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There are a variety of methods for dealing with noisy and/or missing data, in-
cluding various heuristic methods, as well as likelihood-based methods involving
the expectation–maximization (EM) algorithm (e.g., see the book [8] and refer-
ences therein). A challenge in this context is the possible nonconvexity of asso-
ciated optimization problems. For instance, in applications of EM, problems in
which the negative likelihood is a convex function often become nonconvex with
missing or noisy data. Consequently, although the EM algorithm will converge to
a local minimum, it is difficult to guarantee that the local optimum is close to a
global minimum.

In this paper, we study these issues in the context of high-dimensional sparse
linear regression—in particular, in the case when the predictors or covariates are
noisy, missing, and/or dependent. Our main contribution is to develop and study
simple methods for handling these issues, and to prove theoretical results about
both the associated statistical error and the optimization error. Like EM-based ap-
proaches, our estimators are based on solving optimization problems that may be
nonconvex; however, despite this nonconvexity, we are still able to prove that a
simple form of projected gradient descent will produce an output that is “suffi-
ciently close”—as small as the statistical error—to any global optimum. As a sec-
ond result, we bound the statistical error, showing that it has the same scaling as
the minimax rates for the classical cases of perfectly observed and independently
sampled covariates. In this way, we obtain estimators for noisy, missing, and/or
dependent data that have the same scaling behavior as the usual fully-observed
and independent case. The resulting estimators allow us to solve the problem of
high-dimensional Gaussian graphical model selection with missing data.

There is a large body of work on the problem of corrupted covariates or error-
in-variables for regression problems (e.g., see the papers and books [3, 6, 7, 21],
as well as references therein). Much of the earlier theoretical work is classical in
nature, meaning that it requires that the sample size n diverges with the dimen-
sion p fixed. Most relevant to this paper is more recent work that has examined
issues of corrupted and/or missing data in the context of high-dimensional sparse
linear models, allowing for n � p. Städler and Bühlmann [18] developed an EM-
based method for sparse inverse covariance matrix estimation in the missing data
regime, and used this result to derive an algorithm for sparse linear regression with
missing data. As mentioned above, however, it is difficult to guarantee that EM
will converge to a point close to a global optimum of the likelihood, in contrast to
the methods studied here. Rosenbaum and Tsybakov [14] studied the sparse linear
model when the covariates are corrupted by noise, and proposed a modified form of
the Dantzig selector (see the discussion following our main results for a detailed
comparison to this past work, and also to concurrent work [15] by the same au-
thors). For the particular case of multiplicative noise, the type of estimator that we
consider here has been studied in past work [21]; however, this theoretical analysis
is of the classical type, holding only for n � p, in contrast to the high-dimensional
models that are of interest here.
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The remainder of this paper is organized as follows. We begin in Section 2
with background and a precise description of the problem. We then introduce the
class of estimators we will consider and the form of the projected gradient descent
algorithm. Section 3 is devoted to a description of our main results, including a
pair of general theorems on the statistical and optimization error, and then a series
of corollaries applying our results to the cases of noisy, missing, and dependent
data. In Section 4, we demonstrate simulations to confirm that our methods work
in practice, and verify the theoretically-predicted scaling laws. Section 5 contains
proofs of some of the main results, with the remaining proofs contained in the
supplementary Appendix [9].

NOTATION. For a matrix M , we write ‖M‖max := maxi,j |mij | to be the el-
ementwise �∞-norm of M . Furthermore, |||M|||1 denotes the induced �1-operator
norm (maximum absolute column sum) of M , and |||M|||op is the spectral norm
of M . We write κ(M) := λmax(M)

λmin(M)
, the condition number of M . For matrices

M1,M2, we write M1 � M2 to denote the componentwise Hadamard product,
and write M1 :� M2 to denote componentwise division. For functions f (n) and
g(n), we write f (n) � g(n) to mean that f (n) ≤ cg(n) for a universal constant
c ∈ (0,∞), and similarly, f (n) � g(n) when f (n) ≥ c′g(n) for some univer-
sal constant c′ ∈ (0,∞). Finally, we write f (n) � g(n) when f (n) � g(n) and
f (n) � g(n) hold simultaneously.

2. Background and problem setup. In this section, we provide background
and a precise description of the problem, and then motivate the class of estimators
analyzed in this paper. We then discuss a simple class of projected gradient descent
algorithms that can be used to obtain an estimator.

2.1. Observation model and high-dimensional framework. Suppose we ob-
serve a response variable yi ∈ R linked to a covariate vector xi ∈ Rp via the linear
model

yi = 〈
xi, β

∗〉 + εi for i = 1,2, . . . , n.(2.1)

Here, the regression vector β∗ ∈ Rp is unknown, and εi ∈ R is observation noise,
independent of xi . Rather than directly observing each xi ∈ Rp , we observe a vec-
tor zi ∈ Rp linked to xi via some conditional distribution, that is,

zi ∼ Q(· | xi) for i = 1,2, . . . , n.(2.2)

This setup applies to various disturbances to the covariates, including:

(a) Covariates with additive noise: We observe zi = xi + wi , where wi ∈ Rp

is a random vector independent of xi , say zero-mean with known covariance ma-
trix �w .
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(b) Missing data: For some fraction ρ ∈ [0,1), we observe a random vector
zi ∈ Rp such that for each component j , we independently observe zij = xij with
probability 1 − ρ, and zij = ∗ with probability ρ. We can also consider the case
when the entries in the j th column have a different probability ρj of being missing.

(c) Covariates with multiplicative noise: Generalizing the missing data prob-
lem, suppose we observe zi = xi � ui , where ui ∈ Rp is again a random vec-
tor independent of xi , and � is the Hadamard product. The problem of missing
data is a special case of multiplicative noise, where all uij ’s are independent and
uij ∼ Bernoulli(1 − ρj ).

Our first set of results is deterministic, depending on specific instantiations of the
observations {(yi, zi)}ni=1. However, we are also interested in results that hold with
high probability when the xi ’s and zi ’s are drawn at random. We consider both
the case when the xi ’s are drawn i.i.d. from a fixed distribution; and the case of
dependent covariates, when the xi ’s are generated according to a stationary vector
autoregressive (VAR) process.

We work within a high-dimensional framework that allows the number of pre-
dictors p to grow and possibly exceed the sample size n. Of course, consistent
estimation when n � p is impossible unless the model is endowed with addi-
tional structure—for instance, sparsity in the parameter vector β∗. Consequently,
we study the class of models where β∗ has at most k nonzero parameters, where k

is also allowed to increase to infinity with p and n.

2.2. M-estimators for noisy and missing covariates. In order to motivate the
class of estimators we will consider, let us begin by examining a simple determin-
istic problem. Let �x � 0 be the covariance matrix of the covariates, and consider
the �1-constrained quadratic program

β̂ ∈ arg min
‖β‖1≤R

{
1

2
βT �xβ − 〈

�xβ
∗, β

〉}
.(2.3)

As long as the constraint radius R is at least ‖β∗‖1, the unique solution to this
convex program is β̂ = β∗. Of course, this program is an idealization, since in
practice we may not know the covariance matrix �x , and we certainly do not know
�xβ

∗—after all, β∗ is the quantity we are trying to estimate!
Nonetheless, this idealization still provides useful intuition, as it suggests vari-

ous estimators based on the plug-in principle. Given a set of samples, it is natural
to form estimates of the quantities �x and �xβ

∗, which we denote by 	̂ ∈ Rp×p

and γ̂ ∈ Rp , respectively, and to consider the modified program

β̂ ∈ arg min
‖β‖1≤R

{
1

2
βT 	̂β − 〈γ̂ , β〉

}
,(2.4)

or alternatively, the regularized version

β̂ ∈ arg min
β∈Rp

{
1

2
βT 	̂β − 〈γ̂ , β〉 + λn‖β‖1

}
,(2.5)
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where λn > 0 is a user-defined regularization parameter. Note that the two prob-
lems are equivalent by Lagrangian duality when the objectives are convex, but not
in the case of a nonconvex objective. The Lasso [4, 19] is a special case of these
programs, obtained by setting

	̂Las := 1

n
XT X and γ̂Las := 1

n
XT y,(2.6)

where we have introduced the shorthand y = (y1, . . . , yn)
T ∈ Rn, and X ∈ Rn×p ,

with xT
i as its ith row. A simple calculation shows that (	̂Las, γ̂Las) are unbiased

estimators of the pair (�x,�xβ
∗). This unbiasedness and additional concentration

inequalities (to be described in the sequel) underlie the well-known analysis of the
Lasso in the high-dimensional regime.

In this paper, we focus on more general instantiations of the programs (2.4) and
(2.5), involving different choices of the pair (	̂, γ̂ ) that are adapted to the cases
of noisy and/or missing data. Note that the matrix 	̂Las is positive semidefinite, so
the Lasso program is convex. In sharp contrast, for the case of noisy or missing
data, the most natural choice of the matrix 	̂ is not positive semidefinite, hence
the quadratic losses appearing in the problems (2.4) and (2.5) are nonconvex. Fur-
thermore, when 	̂ has negative eigenvalues, the objective in equation (2.5) is un-
bounded from below. Hence, we make use of the following regularized estimator:

β̂ ∈ arg min
‖β‖1≤b0

√
k

{
1

2
βT 	̂β − 〈γ̂ , β〉 + λn‖β‖1

}
(2.7)

for a suitable constant b0.
In the presence of nonconvexity, it is generally impossible to provide a

polynomial-time algorithm that converges to a (near) global optimum, due to the
presence of local minima. Remarkably, we are able to prove that this issue is not
significant in our setting, and a simple projected gradient descent algorithm ap-
plied to the programs (2.4) or (2.7) converges with high probability to a vector
extremely close to any global optimum.

Let us illustrate these ideas with some examples. Recall that (	̂, γ̂ ) serve as
unbiased estimators for (�x,�xβ

∗).

EXAMPLE 1 (Additive noise). Suppose we observe Z = X + W , where W is
a random matrix independent of X, with rows wi drawn i.i.d. from a zero-mean
distribution with known covariance �w . We consider the pair

	̂add := 1

n
ZT Z − �w and γ̂add := 1

n
ZT y.(2.8)

Note that when �w = 0 (corresponding to the noiseless case), the estimators re-
duce to the standard Lasso. However, when �w �= 0, the matrix 	̂add is not posi-
tive semidefinite in the high-dimensional regime (n � p). Indeed, since the matrix
1
n
ZT Z has rank at most n, the subtracted matrix �w may cause 	̂add to have a
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large number of negative eigenvalues. For instance, if �w = σ 2
wI for σ 2

w > 0, then
	̂add has p − n eigenvalues equal to −σ 2

w .

EXAMPLE 2 (Missing data). We now consider the case where the entries of X

are missing at random. Let us first describe an estimator for the special case where
each entry is missing at random, independently with some constant probability ρ ∈
[0,1). (In Example 3 to follow, we will describe the extension to general missing
probabilities.) Consequently, we observe the matrix Z ∈ Rn×p with entries

Zij =
{

Xij , with probability 1 − ρ,
0, otherwise.

Given the observed matrix Z ∈ Rn×p , we use

	̂mis := Z̃T Z̃

n
− ρ diag

(
Z̃T Z̃

n

)
and γ̂mis := 1

n
Z̃T y,(2.9)

where Z̃ij = Zij/(1 − ρ). It is easy to see that the pair (	̂mis, γ̂mis) reduces to the
pair (	̂Las, γ̂Las) for the standard Lasso when ρ = 0, corresponding to no missing
data. In the more interesting case when ρ ∈ (0,1), the matrix Z̃T Z̃

n
in equation (2.9)

has rank at most n, so the subtracted diagonal matrix may cause the matrix 	̂mis to
have a large number of negative eigenvalues when n � p. As a consequence, the
matrix 	̂mis is not (in general) positive semidefinite, so the associated quadratic
function is not convex.

EXAMPLE 3 (Multiplicative noise). As a generalization of the previous ex-
ample, we now consider the case of multiplicative noise. In particular, suppose
we observe the quantity Z = X � U , where U is a matrix of nonnegative noise
variables. In many applications, it is natural to assume that the rows ui of U are
drawn in an i.i.d. manner, say from some distribution in which both the vector
E[u1] and the matrix E[u1u

T
1 ] have strictly positive entries. This general family of

multiplicative noise models arises in various applications; we refer the reader to
the papers [3, 6, 7, 21] for more discussion and examples. A natural choice of the
pair (	̂, γ̂ ) is given by the quantities

	̂mul := 1

n
ZT Z :� E

(
u1u

T
1

)
and 	̂mul := 1

n
ZT y :� E(u1),(2.10)

where :� denotes elementwise division. A small calculation shows that these are
unbiased estimators of �x and �xβ

∗, respectively. The estimators (2.10) have been
studied in past work [21], but only under classical scaling (n � p).

As a special case of the estimators (2.10), suppose the entries uij of U are
independent Bernoulli(1 − ρj ) random variables. Then the observed matrix Z =
X�U corresponds to a missing-data matrix, where each element of the j th column
has probability ρj of being missing. In this case, the estimators (2.10) become

	̂mis = ZT Z

n
:� M and γ̂mis = 1

n
ZT y :� (1 − ρ),(2.11)
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where M := E(u1u
T
1 ) satisfies

Mij =
{

(1 − ρi)(1 − ρj ), if i �= j ,
1 − ρi, if i = j ,

ρ is the parameter vector containing the ρj ’s, and 1 is the vector of all 1’s. In this
way, we obtain a generalization of the estimator discussed in Example 2.

2.3. Restricted eigenvalue conditions. Given an estimate β̂ , there are various
ways to assess its closeness to β∗. In this paper, we focus on the �2-norm ‖β̂ −
β∗‖2, as well as the closely related �1-norm ‖β̂ −β∗‖1. When the covariate matrix
X is fully observed (so that the Lasso can be applied), it is now well understood
that a sufficient condition for �2-recovery is that the matrix 	̂Las = 1

n
XT X satisfy

a certain type of restricted eigenvalue (RE) condition (e.g., [2, 20]). In this paper,
we make use of the following condition.

DEFINITION 1 (Lower-RE condition). The matrix 	̂ satisfies a lower re-
stricted eigenvalue condition with curvature α1 > 0 and tolerance τ(n,p) > 0 if

θT 	̂θ ≥ α1‖θ‖2
2 − τ(n,p)‖θ‖2

1 for all θ ∈ Rp .(2.12)

It can be shown that when the Lasso matrix 	̂Las = 1
n
XT X satisfies this RE

condition (2.12), the Lasso estimate has low �2-error for any vector β∗ supported
on any subset of size at most k � 1

τ(n,p)
. In particular, bound (2.12) implies a

sparse RE condition for all k of this magnitude, and conversely, Lemma 11 in
the Appendix of [9] shows that a sparse RE condition implies bound (2.12). In
this paper, we work with condition (2.12), since it is especially convenient for
analyzing optimization algorithms.

In the standard setting (with uncorrupted and fully observed design matrices),
it is known that for many choices of the design matrix X (with rows having co-
variance �), the Lasso matrix 	̂Las will satisfy such an RE condition with high
probability (e.g., [13, 17]) with α1 = 1

2λmin(�) and τ(n,p) � logp
n

. A significant
portion of the analysis in this paper is devoted to proving that different choices
of 	̂, such as the matrices 	̂add and 	̂mis defined earlier, also satisfy condition
(2.12) with high probability. This fact is by no means obvious, since as previously
discussed, the matrices 	̂add and 	̂mis generally have large numbers of negative
eigenvalues.

Finally, although such upper bounds are not necessary for statistical consistency,
our algorithmic results make use of the analogous upper restricted eigenvalue con-
dition, formalized in the following:

DEFINITION 2 (Upper-RE condition). The matrix 	̂ satisfies an upper re-
stricted eigenvalue condition with smoothness α2 > 0 and tolerance τ(n,p) > 0
if

θT 	̂θ ≤ α2‖θ‖2
2 + τ(n,p)‖θ‖2

1 for all θ ∈ Rp .(2.13)
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In recent work on high-dimensional projected gradient descent, Agarwal et al.
[1] make use of a more general form of the lower and upper bounds (2.12) and
(2.13), applicable to nonquadratic losses as well, which are referred to as the
restricted strong convexity (RSC) and restricted smoothness (RSM) conditions,
respectively. For various class of random design matrices, it can be shown that
the Lasso matrix 	̂Las satisfies the upper bound (2.13) with α2 = 2λmax(�x) and
τ(n,p) � logp

n
; see Raskutti et al. [13] for the Gaussian case and Rudelson and

Zhou [17] for the sub-Gaussian setting. We will establish similar scaling for our
choices of 	̂.

2.4. Gradient descent algorithms. In addition to proving results about the
global minima of the (possibly nonconvex) programs (2.4) and (2.5), we are also
interested in polynomial-time procedures for approximating such optima. In this
paper, we analyze some simple algorithms for solving either the constrained pro-
gram (2.4) or the Lagrangian version (2.7). Note that the gradient of the quadratic
loss function takes the form ∇L(β) = 	̂β − γ̂ . In application to the constrained
version, the method of projected gradient descent generates a sequence of iterates
{βt , t = 0,1,2, . . .} by the recursion

βt+1 = arg min
‖β‖1≤R

{
L

(
βt ) + 〈∇L

(
βt ), β − βt 〉 + η

2

∥∥β − βt
∥∥2

2

}
,(2.14)

where η > 0 is a stepsize parameter. Equivalently, this update can be written as
βt+1 = �(βt − 1

η
∇L(βt )), where � denotes the �2-projection onto the �1-ball of

radius R. This projection can be computed rapidly in O(p) time using a procedure
due to Duchi et al. [5]. For the Lagrangian update, we use a slight variant of the
projected gradient update (2.14), namely

βt+1 = arg min
‖β‖1≤R

{
L

(
βt ) + 〈∇L

(
βt ), β − βt 〉 + η

2

∥∥β − βt
∥∥2

2 + λn‖β‖1

}
(2.15)

with the only difference being the inclusion of the regularization term. This update
can also performed efficiently by performing two projections onto the �1-ball; see
the paper [1] for details.

When the objective function is convex (equivalently, 	̂ is positive semidefinite),
the iterates (2.14) or (2.15) are guaranteed to converge to a global minimum of
the objective functions (2.4) and (2.7), respectively. In our setting, the matrix 	̂

need not be positive semidefinite, so the best generic guarantee is that the iterates
converge to a local optimum. However, our analysis shows that for the family of
programs (2.4) or (2.7), under a reasonable set of conditions satisfied by various
statistical models, the iterates actually converge to a point extremely close to any
global optimum in both �1-norm and �2-norm; see Theorem 2 to follow for a more
detailed statement.
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3. Main results and consequences. We now state our main results and dis-
cuss their consequences for noisy, missing, and dependent data.

3.1. General results. We provide theoretical guarantees for both the con-
strained estimator (2.4) and the Lagrangian version (2.7). Note that we obtain dif-
ferent optimization problems as we vary the choice of the pair (	̂, γ̂ ) ∈ Rp×p ×
Rp . We begin by stating a pair of general results, applicable to any pair that satisfies
certain conditions. Our first result (Theorem 1) provides bounds on the statistical
error, namely the quantity ‖β̂ −β∗‖2, as well as the corresponding �1-error, where
β̂ is any global optimum of the programs (2.4) or (2.7). Since the problem may
be nonconvex in general, it is not immediately obvious that one can obtain a prov-
ably good approximation to any global optimum without resorting to costly search
methods. In order to assuage this concern, our second result (Theorem 2) provides
rigorous bounds on the optimization error, namely the differences ‖βt − β̂‖2 and
‖βt − β̂‖1 incurred by the iterate βt after running t rounds of the projected gradient
descent updates (2.14) or (2.15).

3.1.1. Statistical error. In controlling the statistical error, we assume that the
matrix 	̂ satisfies a lower-RE condition with curvature α1 and tolerance τ(n,p), as
previously defined (2.12). Recall that 	̂ and γ̂ serve as surrogates to the determin-
istic quantities �x ∈ Rp×p and �xβ

∗ ∈ Rp , respectively. Our results also involve
a measure of deviation in these surrogates. In particular, we assume that there is
some function ϕ(Q, σε), depending on the two sources of noise in our problem:
the standard deviation σε of the observation noise vector ε from equation (2.1),
and the conditional distribution Q from equation (2.2) that links the covariates xi

to the observed versions zi . With this notation, we consider the deviation condition

∥∥γ̂ − 	̂β∗∥∥∞ ≤ ϕ(Q, σε)

√
logp

n
.(3.1)

To aid intuition, note that inequality (3.1) holds whenever the following two devi-
ation conditions are satisfied:

∥∥γ̂ − �xβ
∗∥∥∞ ≤ ϕ(Q, σε)

√
logp

n
and

(3.2) ∥∥(	̂ − �x)β
∗∥∥∞ ≤ ϕ(Q, σε)

√
logp

n
.

The pair of inequalities (3.2) clearly measures the deviation of the estimators
(	̂, γ̂ ) from their population versions, and they are sometimes easier to verify the-
oretically. However, inequality (3.1) may be used directly to derive tighter bounds
(e.g., in the additive noise case). Indeed, the bounds established via inequalities
(3.2) is not sharp in the limit of low noise on the covariates, due to the second
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inequality. In the proofs of our corollaries to follow, we will verify the devia-
tion conditions for various forms of noisy, missing, and dependent data, with the
quantity ϕ(Q, σε) changing depending on the model. We have the following re-
sult, which applies to any global optimum β̂ of the regularized version (2.7) with

λn ≥ 4ϕ(Q, σε)

√
logp

n
:

THEOREM 1 (Statistical error). Suppose the surrogates (	̂, γ̂ ) satisfy the de-
viation bound (3.1), and the matrix 	̂ satisfies the lower-RE condition (2.12) with
parameters (α1, τ ) such that

√
kτ(n,p) ≤ min

{
α1

128
√

k
,
ϕ(Q, σε)

b0

√
logp

n

}
.(3.3)

Then for any vector β∗ with sparsity at most k, there is a universal positive constant
c0 such that any global optimum β̂ of the Lagrangian program (2.7) with any
b0 ≥ ‖β∗‖2 satisfies the bounds

∥∥β̂ − β∗∥∥
2 ≤ c0

√
k

α1
max

{
ϕ(Q, σε)

√
logp

n
,λn

}
and(3.4a)

∥∥β̂ − β∗∥∥
1 ≤ 8c0k

α1
max

{
ϕ(Q, σε)

√
logp

n
,λn

}
.(3.4b)

The same bounds (without λn) also apply to the constrained program (2.4) with
radius choice R = ‖β∗‖1.

Remarks. To be clear, all the claims of Theorem 1 are deterministic. Proba-
bilistic conditions will enter when we analyze specific statistical models and cer-
tify that the RE condition (3.3) and deviation conditions are satisfied by a ran-
dom pair (	̂, γ̂ ) with high probability. We note that for the standard Lasso choice
(	̂Las, γ̂Las) of this matrix–vector pair, bounds of the form (3.4) for sub-Gaussian
noise are well known from past work (e.g., [2, 11, 12, 23]). The novelty of The-
orem 1 is in allowing for general pairs of such surrogates, which—as shown by
the examples discussed earlier—can lead to nonconvexity in the underlying M-
estimator. Moreover, some interesting differences arise due to the term ϕ(Q, σε),
which changes depending on the nature of the model (missing, noisy, and/or depen-
dent). As will be clarified in the sequel. Proving that the conditions of Theorem 1
are satisfied with high probability for noisy/missing data requires some nontrivial
analysis involving both concentration inequalities and random matrix theory.

Note that in the presence of nonconvexity, it is possible in principle for the op-
timization problems (2.4) and (2.7) to have many global optima that are separated
by large distances. Interestingly, Theorem 1 guarantees that this unpleasant feature
does not arise under the stated conditions: given any two global optima β̂ and β̃
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of the program (2.4), Theorem 1 combined with the triangle inequality guarantees
that

‖β̂ − β̃‖2 ≤ ∥∥β̂ − β∗∥∥
2 + ∥∥β̃ − β∗∥∥

2 ≤ 2c0
ϕ(Q, σε)

α1

√
k logp

n

[and similarly for the program (2.7)]. Consequently, under any scaling such that
k logp

n
= o(1), the set of all global optima must lie within an �2-ball whose radius

shrinks to zero.
In addition, it is worth observing that Theorem 1 makes a specific prediction

for the scaling behavior of the �2-error ‖β̂ − β∗‖2. In order to study this scaling
prediction, we performed simulations under the additive noise model described in
Example 1, using the parameter setting �x = I and �w = σ 2

wI with σw = 0.2.
Panel (a) of Figure 1 provides plots3 of the error ‖β̂ − β∗‖2 versus the sample
size n, for problem dimensions p ∈ {128,256,512}. Note that for all three choices
of dimensions, the error decreases to zero as the sample size n increases, showing
consistency of the method. The curves also shift to the right as the dimension
p increases, reflecting the natural intuition that larger problems are harder in a
certain sense. Theorem 1 makes a specific prediction about this scaling behavior:
in particular, if we plot the �2-error versus the rescaled sample size n/(k logp), the
curves should roughly align for different values of p. Panel (b) shows the same data
re-plotted on these rescaled axes, thus verifying the predicted “stacking behavior.”

(a) (b)

FIG. 1. Plots of the error ‖β̂ − β∗‖2 after running projected gradient descent on the nonconvex
objective, with sparsity k ≈ √

p. Plot (a) is an error plot for i.i.d. data with additive noise, and plot
(b) shows �2-error versus the rescaled sample size n

k logp
. As predicted by Theorem 1, the curves

align for different values of p in the rescaled plot.

3Corollary 1, to be stated shortly, guarantees that the conditions of Theorem 1 are satisfied with
high probability for the additive noise model. In addition, Theorem 2 to follow provides an efficient
method of obtaining an accurate approximation of the global optimum.
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Finally, as noted by a reviewer, the constraint R = ‖β∗‖1 in the program (2.4)
is rather restrictive, since β∗ is unknown. Theorem 1 merely establishes a heuristic
for the scaling expected for this optimal radius. In this regard, the Lagrangian
estimator (2.7) is more appealing, since it only requires choosing b0 to be larger
than ‖β∗‖2, and the conditions on the regularizer λn are the standard ones from
past work on the Lasso.

3.1.2. Optimization error. Although Theorem 1 provides guarantees that hold
uniformly for any global minimizer, it does not provide guidance on how to ap-
proximate such a global minimizer using a polynomial-time algorithm. Indeed, for
nonconvex programs in general, gradient-type methods may become trapped in lo-
cal minima, and it is impossible to guarantee that all such local minima are close
to a global optimum. Nonetheless, we are able to show that for the family of pro-
grams (2.4), under reasonable conditions on 	̂ satisfied in various settings, simple
gradient methods will converge geometrically fast to a very good approximation of
any global optimum. The following theorem supposes that we apply the projected
gradient updates (2.14) to the constrained program (2.4), or the composite updates
(2.15) to the Lagrangian program (2.7), with stepsize η = 2α2. In both cases, we
assume that n � k logp, as is required for statistical consistency in Theorem 1.

THEOREM 2 (Optimization error). Under the conditions of Theorem 1:

(a) For any global optimum β̂ of the constrained program (2.4), there are uni-
versal positive constants (c1, c2) and a contraction coefficient γ ∈ (0,1), indepen-
dent of (n,p, k), such that the gradient descent iterates (2.14) satisfy the bounds∥∥βt − β̂

∥∥2
2 ≤ γ t

∥∥β0 − β̂
∥∥2

2 + c1
logp

n

∥∥β̂ − β∗∥∥2
1 + c2

∥∥β̂ − β∗∥∥2
2,(3.5) ∥∥βt − β̂

∥∥
1 ≤ 2

√
k
∥∥βt − β̂

∥∥
2 + 2

√
k
∥∥β̂ − β∗∥∥

2 + 2
∥∥β̂ − β∗∥∥

1(3.6)

for all t ≥ 0.
(b) Letting φ denote the objective function of Lagrangian program (2.7) with

global optimum β̂ , and applying composite gradient updates (2.15), there are uni-
versal positive constants (c1, c2) and a contraction coefficient γ ∈ (0,1), indepen-
dent of (n,p, k), such that∥∥βt − β̂

∥∥2
2 ≤ c1

∥∥β̂ − β∗∥∥2
2︸ ︷︷ ︸

δ2

for all iterates t ≥ T ,(3.7)

where T := c2 log (φ(β0)−φ(β̂))

δ2 / log(1/γ ).

Remarks. As with Theorem 1, these claims are deterministic in nature. Prob-
abilistic conditions will enter into the corollaries, which involve proving that the
surrogate matrices 	̂ used for noisy, missing and/or dependent data satisfy the
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lower- and upper-RE conditions with high probability. The proof of Theorem 2 it-
self is based on an extension of a result due to Agarwal et al. [1] on the convergence
of projected gradient descent and composite gradient descent in high dimensions.
Their result, as originally stated, imposed convexity of the loss function, but the
proof can be modified so as to apply to the nonconvex loss functions of interest
here. As noted following Theorem 1, all global minimizers of the nonconvex pro-
gram (2.4) lie within a small ball. In addition, Theorem 2 guarantees that the local
minimizers also lie within a ball of the same magnitude. Note that in order to show
that Theorem 2 can be applied to the specific statistical models of interest in this
paper, a considerable amount of technical analysis remains in order to establish
that its conditions hold with high probability.

In order to understand the significance of the bounds (3.5) and (3.7), note that
they provide upper bounds for the �2-distance between the iterate βt at time t ,
which is easily computed in polynomial-time, and any global optimum β̂ of the
program (2.4) or (2.7), which may be difficult to compute. Focusing on bound
(3.5), since γ ∈ (0,1), the first term in the bound vanishes as t increases. The
remaining terms involve the statistical errors ‖β̂ − β∗‖q , for q = 1,2, which are
controlled in Theorem 1. It can be verified that the two terms involving the statisti-
cal error on the right-hand side are bounded as O(

k logp
n

), so Theorem 2 guarantees
that projected gradient descent produce an output that is essentially as good—in
terms of statistical error—as any global optimum of the program (2.4). Bound
(3.7) provides a similar guarantee for composite gradient descent applied to the
Lagrangian version.

Experimentally, we have found that the predictions of Theorem 2 are borne out
in simulations. Figure 2 shows the results of applying the projected gradient de-
scent method to solve the optimization problem (2.4) in the case of additive noise

(a) (b)

FIG. 2. Plots of the optimization error log(‖βt − β̂‖2) and statistical error log(‖βt −β∗‖2) versus
iteration number t , generated by running projected gradient descent on the nonconvex objective.
Each plot shows the solution path for the same problem instance, using 10 different starting points.
As predicted by Theorem 2, the optimization error decreases geometrically.
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[panel (a)], and missing data [panel (b)]. In each case, we generated a random
problem instance, and then applied the projected gradient descent method to com-
pute an estimate β̂ . We then reapplied the projected gradient method to the same
problem instance 10 times, each time with a random starting point, and measured
the error ‖βt − β̂‖2 between the iterates and the first estimate (optimization er-
ror), and the error ‖βt − β∗‖2 between the iterates and the truth (statistical error).
Within each panel, the blue traces show the optimization error over 10 trials, and
the red traces show the statistical error. On the logarithmic scale given, a geomet-
ric rate of convergence corresponds to a straight line. As predicted by Theorem 2,
regardless of the starting point, the iterates {βt } exhibit geometric convergence to
the same fixed point.4 The statistical error contracts geometrically up to a certain
point, then flattens out.

3.2. Some consequences. As discussed previously, both Theorems 1 and 2 are
deterministic results. Applying them to specific statistical models requires some
additional work in order to establish that the stated conditions are met. We now turn
to the statements of some consequences of these theorems for different cases of
noisy, missing and dependent data. In all the corollaries below, the claims hold with
probability greater than 1−c1 exp(−c2 logp), where (c1, c2) are universal positive
constants, independent of all other problem parameters. Note that in all corollaries,
the triplet (n,p, k) is assumed to satisfy scaling of the form n � k logp, as is
necessary for �2-consistent estimation of k-sparse vectors in p dimensions.

DEFINITION 3. We say that a random matrix X ∈ Rn×p is sub-Gaussian with
parameters (�,σ 2) if:

(a) each row xT
i ∈ Rp is sampled independently from a zero-mean distribution

with covariance �, and
(b) for any unit vector u ∈ Rp , the random variable uT xi is sub-Gaussian with

parameter at most σ .

For instance, if we form a random matrix by drawing each row independently
from the distribution N(0,�), then the resulting matrix X ∈ Rn×p is a sub-
Gaussian matrix with parameters (�, |||�|||op).

3.2.1. Bounds for additive noise: i.i.d. case. We begin with the case of i.i.d.
samples with additive noise, as described in Example 1.

COROLLARY 1. Suppose that we observe Z = X + W , where the random
matrices X,W ∈ Rn×p are sub-Gaussian with parameters (�x,σ

2
x ), and let ε be

4To be precise, Theorem 2 states that the iterates will converge geometrically to a small neighbor-
hood of all the global optima.
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an i.i.d. sub-Gaussian vector with parameter σε
2. Let σ 2

z = σ 2
x + σ 2

w . Then un-

der the scaling n � max{ σ 4
z

λmin
2(�x)

,1}k logp, for the M-estimator based on the

surrogates (	̂add, γ̂add), the results of Theorems 1 and 2 hold with parameters
α1 = 1

2λmin(�x) and ϕ(Q, σε) = c0σz(σw + σε)‖β∗‖2, with probability at least
1 − c1 exp(−c2 logp).

Remarks. (a) Consequently, the �2-error of any optimal solution β̂ satisfies
the bound

∥∥β̂ − β∗∥∥
2 � σz(σw + σε)

λmin(�x)

∥∥β∗∥∥
2

√
k logp

n

with high probability. The prefactor in this bound has a natural interpretation as an
inverse signal-to-noise ratio; for instance, when X and W are zero-mean Gaussian
matrices with row covariances �x = σ 2

x I and �w = σ 2
wI , respectively, we have

λmin(�x) = σ 2
x , so

(σw + σε)
√

σ 2
x + σ 2

w

λmin(�x)
= σw + σε

σx

√
1 + σ 2

w

σ 2
x

.

This quantity grows with the ratios σw/σx and σε/σx , which measure the SNR
of the observed covariates and predictors, respectively. Note that when σw = 0,
corresponding to the case of uncorrupted covariates, the bound on �2-error agrees
with known results. See Section 4 for simulations and further discussions of the
consequences of Corollary 1.

(b) We may also compare the results in (a) with bounds from past work on high-
dimensional sparse regression with noisy covariates [15]. In this work, Rosen-
baum and Tsybakov derive similar concentration bounds on sub-Gaussian matri-

ces. The tolerance parameters are all O(

√
logp

n
), with prefactors depending on the

sub-Gaussian parameters of the matrices. In particular, in their notation,

ν � (
σxσw + σwσε + σ 2

w

)√ logp

n

∥∥β∗∥∥
1,

leading to the bound (cf. Theorem 2 of Rosenbaum and Tsybakov [15])

∥∥β̂ − β∗∥∥
2 � ν

√
k

λmin(�x)
� σ 2

λmin(�x)

√
k logp

n

∥∥β∗∥∥
1.

Extensions to unknown noise covariance. Situations may arise where the
noise covariance �w is unknown, and must be estimated from the data. One sim-
ple method is to assume that �w is estimated from independent observations of the
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noise. In this case, suppose we independently observe a matrix W0 ∈ Rn×p with n

i.i.d. vectors of noise. Then we use �̂w = 1
n
WT

0 W0 as our estimate of �w . A more
sophisticated variant of this method (cf. Chapter 4 of Carroll et al. [3]) assumes
that we observe ki replicate measurements Zi1, . . . ,Zik for each xi and form the
estimator

�̂w =
∑n

i=1
∑ki

j=1(Zij − Zi·)(Zij − Zi·)T∑n
i=1(ki − 1)

.(3.8)

Based on the estimator �̂w , we form the pair (	̃, γ̃ ) such that γ̃ = 1
n
ZT y and

	̃ = ZT Z
n

− �̂w . In the proofs of Section 5, we will analyze the case where �̂w =
1
n
WT

0 W0 and show that the result of Corollary 1 still holds when �w must be
estimated from the data. Note that the estimator in equation (3.8) will also yield
the same result, but the analysis is more complicated.

3.2.2. Bounds for missing data: i.i.d. case. Next, we turn to the case of i.i.d.
samples with missing data, as discussed in Example 3. For a missing data param-
eter vector ρ, we define ρmax := maxj ρj , and assume ρmax < 1.

COROLLARY 2. Let X ∈ Rn×p be sub-Gaussian with parameters (�x,σ
2
x ),

and Z the missing data matrix with parameter ρ. Let ε be an i.i.d. sub-Gaussian

vector with parameter σε
2. If n � max( 1

(1−ρmax)4
σ 4

x

λ2
min(�x)

,1)k logp, then Theorems

1 and 2 hold with probability at least 1 − c1 exp(−c2 logp) for α1 = 1
2λmin(�x)

and ϕ(Q, σε) = c0
σx

1−ρmax
(σε + σx

1−ρmax
)‖β∗‖2.

Remarks. Suppose X is a Gaussian random matrix and ρj = ρ for all j . In

this case, the ratio σ 2
x

λmin(�x)
= λmax(�x)

λmin(�x)
= κ(�x) is the condition number of �x .

Then
ϕ(Q, σε)

α
�

(
1

λmin(�x)

σxσε

1 − ρ
+ κ(�x)

(1 − ρ)2

)∥∥β∗∥∥
2,

a quantity that depends on both the conditioning of �x , and the fraction ρ ∈ [0,1)

of missing data. We will consider the results of Corollary 2 applied to this example
in the simulations of Section 4.

Extensions to unknown ρ. As in the additive noise case, we may wish to
consider the case when the missing data parameters ρ are not observed and must
be estimated from the data. For each j = 1,2, . . . , p, we estimate ρj using ρ̂j ,
the empirical average of the number of observed entries per column. Let ρ̂ ∈ Rp

denote the resulting estimator of ρ. Naturally, we use the pair of estimators (	̃, γ̃ )

defined by

	̃ = ZT Z

n
:� M̃ and γ̃ = 1

n
ZT y :� (1 − ρ̂),(3.9)
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where

M̃ij =
{

(1 − ρ̂i)(1 − ρ̂j ), if i �= j ,
1 − ρ̂i , if i = j .

We will show in Section 5 that Corollary 2 holds when ρ is estimated by ρ̂.

3.2.3. Bounds for dependent data. Turning to the case of dependent data, we
consider the setting where the rows of X are drawn from a stationary vector au-
toregressive (VAR) process according to

xi+1 = Axi + vi for i = 1,2, . . . , n − 1,(3.10)

where vi ∈ Rp is a zero-mean noise vector with covariance matrix �v , and
A ∈ Rp×p is a driving matrix with spectral norm |||A|||2 < 1. We assume the
rows of X are drawn from a Gaussian distribution with covariance �x , such that
�x = A�xA

T + �v . Hence, the rows of X are identically distributed but not in-
dependent, with the choice A = 0 giving rise to the i.i.d. scenario. Corollaries 3
and 4 correspond to the case of additive noise and missing data for a Gaussian
VAR process.

COROLLARY 3. Suppose the rows of X are drawn according to a Gaussian
VAR process with driving matrix A. Suppose the additive noise matrix W is i.i.d.
with Gaussian rows, and let ε be an i.i.d. sub-Gaussian vector with parameter σε

2.

If n � max(
ζ 4

λ2
min(�x)

,1)k logp, with ζ 2 = |||�w|||op + 2|||�x |||op
1−|||A|||op

, then Theorems 1

and 2 hold with probability at least 1 − c1 exp(−c2 logp) for α1 = 1
2λmin(�x) and

ϕ(Q, σε) = c0(σεζ + ζ 2)‖β∗‖2.

COROLLARY 4. Suppose the rows of X are drawn according to a Gaus-
sian VAR process with driving matrix A, and Z is the observed matrix sub-
ject to missing data, with parameter ρ. Let ε be an i.i.d. sub-Gaussian vector

with parameter σε
2. If n � max(

ζ ′4
λ2

min(�x)
,1)k logp, with ζ ′2 = 1

(1−ρmax)2
2|||�x |||op
1−|||A|||op

,

then Theorems 1 and 2 hold with probability at least 1 − c1 exp(−c2 logp) for
α1 = 1

2λmin(�x) and ϕ(Q, σε) = c0(σεζ
′ + ζ ′2)‖β∗‖2.

REMARKS. Note that the scaling and the form of ϕ in Corollaries 2–4 are

very similar, except with different effective variances σ 2 = σ 2
x

(1−ρmax)2 , ζ 2 or ζ ′2,

depending on the type of corruption in the data. As we will see in Section 5, the
proofs involve verifying the deviation conditions (3.2) using similar techniques.
On the other hand, the proof of Corollary 1 proceeds via deviation condition (3.1),
which produces a tighter bound.

Note that we may extend the cases of dependent data to situations when �w and
ρ are unknown and must be estimated from the data. The proofs of these extensions
are identical to the i.i.d case, so we will omit them.
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3.3. Application to graphical model inverse covariance estimation. The prob-
lem of inverse covariance estimation for a Gaussian graphical model is also re-
lated to the Lasso. Meinshausen and Bühlmann [10] prescribed a way to recover
the support of the precision matrix � when each column of � is k-sparse, via
linear regression and the Lasso. More recently, Yuan [22] proposed a method for
estimating � using the Dantzig selector, and obtained error bounds on |||�̂ − �|||1
when the columns of � are bounded in �1. Both of these results assume that X is
fully-observed and has i.i.d. rows.

Suppose we are given a matrix X ∈ Rn×p of samples from a multivariate Gaus-
sian distribution, where each row is distributed according to N(0,�). We assume
the rows of X are either i.i.d. or sampled from a Gaussian VAR process. Based
on the modified Lasso of the previous section, we devise a method to estimate �

based on a corrupted observation matrix Z, when � is sparse. Our method bears
similarity to the method of Yuan [22], but is valid in the case of corrupted data,
and does not require an �1 column bound. Let Xj denote the j th column of X,
and let X−j denote the matrix X with j th column removed. By standard results on
Gaussian graphical models, there exists a vector θj ∈ Rp−1 such that

Xj = X−j θj + εj ,(3.11)

where εj is a vector of i.i.d. Gaussians and εj ⊥⊥ X−j for each j . If we define aj :=
−(�jj − �j,−j θ

j )−1, we can verify that �j,−j = aj θ
j . Our algorithm, described

below, forms estimates θ̂ j and âj for each j , then combines the estimates to obtain
an estimate �̂j,−j = âj θ̂

j .
In the additive noise case, we observe the matrix Z = X + W . From the equa-

tions (3.11), we obtain Zj = X−j θj + (εj + Wj). Note that δj = εj + Wj is
a vector of i.i.d. Gaussians, and since X ⊥⊥ W , we have δj ⊥⊥ X−j . Hence, our
results on covariates with additive noise allow us to recover θj from Z. We
can verify that this reduces to solving the program (2.4) or (2.7) with the pair
(	̂(j), γ̂ (j)) = (�̂−j,−j ,

1
n
Z−jT Zj ), where �̂ = 1

n
ZT Z − �w .

When Z is a missing-data version of X, we similarly estimate the vectors θj via
equation (3.11), using our results on the Lasso with missing covariates. Here, both
covariates and responses are subject to missing data, but this makes no difference
in our theoretical results. For each j , we use the pair(

	̂(j), γ̂ (j)) =
(
�̂−j,−j ,

1

n
Z−jT Zj :� (

1 − ρ−j )
(1 − ρj )

)
,

where �̂ = 1
n
ZT Z :� M , and M is defined as in Example 3.

To obtain the estimate �̂, we therefore propose the following procedure, based
on the estimators {(	̂(j), γ̂ (j))}pj=1 and �̂.

ALGORITHM 3.1. (1) Perform p linear regressions of the variables Zj upon
the remaining variables Z−j , using the program (2.4) or (2.7) with the estimators
(	̂(j), γ̂ (j)), to obtain estimates θ̂ j of θj .
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(2) Estimate the scalars aj using the quantity âj := −(�̂jj − �̂j,−j θ̂
j )−1, based

on the estimator �̂. Form �̃ with �̃j,−j = âj θ̂
j and �̃jj = −âj .

(3) Set �̂ = arg min�∈Sp |||�− �̃|||1, where Sp is the set of symmetric matrices.

Note that the minimization in step (3) is a linear program, so is easily solved
with standard methods. We have the following corollary about �̂:

COROLLARY 5. Suppose the columns of the matrix � are k-sparse, and sup-
pose the condition number κ(�) is nonzero and finite. Suppose we have

∥∥γ̂ (j) − 	̂(j)θj
∥∥∞ ≤ ϕ(Q, σε)

√
logp

n
∀j,(3.12)

and suppose we have the following additional deviation condition on �̂:

‖�̂ − �‖max ≤ cϕ(Q, σε)

√
logp

n
.(3.13)

Finally, suppose the lower-RE condition holds uniformly over the matrices 	̂(j)

with the scaling (3.3). Then under the estimation procedure of Algorithm 3.1, there
exists a universal constant c0 such that

|||�̂ − �|||op ≤ c0κ
2(�)

λmin(�)

(
ϕ(Q, σε)

λmin(�)
+ ϕ(Q, σε)

α1

)
k

√
logp

n
.

REMARKS. Note that Corollary 5 is again a deterministic result, with parallel
structure to Theorem 1. Furthermore, the deviation bounds (3.12) and (3.13) hold
for all scenarios considered in Section 3.2 above, using Corollaries 1–4 for the
first two inequalities, and a similar bounding technique for ‖�̂ − �‖max; and the
lower-RE condition holds over all matrices 	̂(j) by the same technique used to
establish the lower-RE condition for 	̂. The uniformity of the lower-RE bound
over all sub-matrices holds because

0 < λmin(�) ≤ λmin(�−j,−j ) ≤ λmax(�−j,−j ) ≤ λmax(�) < ∞.

Hence, the error bound in Corollary 5 holds with probability at least 1 −
c1 exp(−c2 logp) when n � k logp, for the appropriate values of ϕ and α1.

4. Simulations. In this section, we report some additional simulation results
to confirm that the scalings predicted by our theory are sharp. In Figure 1 following
Theorem 1, we showed that the error curves align when plotted against a suitably
rescaled sample size, in the case of additive noise perturbations. Panel (a) of Fig-
ure 3 shows these same types of rescaled curves for the case of missing data, with
sparsity k ≈ √

p, covariate matrix �x = I , and missing fraction ρ = 0.2, whereas
panel (b) shows the rescaled plots for the vector autoregressive case with additive
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(a) (b)

FIG. 3. Plots of the error ‖β̂ − β∗‖2 after running projected gradient descent on the nonconvex
objective, with sparsity k ≈ √

p. In all cases, we plotted the error versus the rescaled sample size
n

k logp
. As predicted by Theorems 1 and 2, the curves align for different values of p when plotted in

this rescaled manner. (a) Missing data case with i.i.d. covariates. (b) Vector autoregressive data with
additive noise. Each point represents an average over 100 trials.

noise perturbations, using a driving matrix A with |||A|||op = 0.2. Each point corre-
sponds to an average over 100 trials. Once again, we see excellent agreement with
the scaling law provided by Theorem 1.

We also ran simulations to verify the form of the function ϕ(Q, σε) appearing in
Corollaries 1 and 2. In the additive noise setting for i.i.d. data, we set �x = I and ε

equal to i.i.d. Gaussian noise with σε = 0.5. For a fixed value of the parameters p =
256 and k ≈ logp, we ran the projected gradient descent algorithm for different
values of σw ∈ (0.1,0.3), such that �w = σ 2

wI and n ≈ 60(1 + σ 2
w)2k logp, with

‖β∗‖2 = 1. According to the theory, ϕ(Q,σε)
α

� (σw + 0.5)
√

1 + σ 2
w , so that

∥∥β̂ − β∗∥∥
2 � (σw + 0.5)

√
1 + σ 2

w

√
k logp

(1 + σ 2
w)2k logp

� σw + 0.5√
1 + σ 2

w

.

In order to verify this theoretical prediction, we plotted σw versus the rescaled

error
√

1+σ 2
w

σw+0.5 ‖β̂ − β∗‖2. As shown by Figure 4(a), the curve is roughly constant,

as predicted by the theory.
Similarly, in the missing data setting for i.i.d. data, we set �x = I and ε equal to

i.i.d. Gaussian noise with σε = 0.5. For a fixed value of the parameters p = 128 and
k ≈ logp, we ran simulations for different values of the missing data parameter
ρ ∈ (0,0.3), such that n ≈ 60

(1−ρ)4 k logp. According to the theory, ϕ(Q,σε)
α

� σε

1−ρ
+

1
(1−ρ)2 . Consequently, with our specified scalings of (n,p, k), we should expect a
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(a) (b)

FIG. 4. (a) Plot of the rescaled �2-error

√
1+σ 2

w

σw+0.5‖β̂ − β∗‖2 versus the additive noise standard

deviation σw for the i.i.d. model with additive noise. (b) Plot of the rescaled �2-error ‖β̂−β∗‖2
1+0.5(1−ρ)

versus the missing fraction ρ for the i.i.d. model with missing data. Both curves are roughly constant,
showing that our error bounds on ‖β̂ − β∗‖2 exhibit the proper scaling. Each point represents an
average over 200 trials.

bound of the form

∥∥β̂ − β∗∥∥
2 � ϕ(Q, σε)

α

√
k logp

n
� 1 + 0.5(1 − ρ).

The plot of ρ versus the rescaled error ‖β̂−β∗‖2
1+0.5(1−ρ)

is shown in Figure 4(b). The
curve is again roughly constant, agreeing with theoretical results.

Finally, we studied the behavior of the inverse covariance matrix estimation
algorithm on three types of Gaussian graphical models:

(a) Chain-structured graphs. In this case, all nodes of the graph are arranged in
a linear chain. Hence, each node (except the two end nodes) has degree k = 2. The
diagonal entries of � are set equal to 1, and all entries corresponding to links in
the chain are set equal to 0.1. Then � is rescaled so |||�|||op = 1.

(b) Star-structured graphs. In this case, all nodes are connected to a central
node, which has degree k ≈ 0.1p. All other nodes have degree 1. The diagonal
entries of � are set equal to 1, and all entries corresponding to edges in the graph
are set equal to 0.1. Then � is rescaled so |||�|||op = 1.

(c) Erdős–Renyi graphs. This example comes from Rothman et al. [16]. For
a sparsity parameter k ≈ logp, we randomly generate the matrix � by first gen-
erating the matrix B such that the diagonal entries are 0, and all other entries are
independently equal to 0.5 with probability k/p, and 0 otherwise. Then δ is chosen
so that � = B + δI has condition number p. Finally, � is rescaled so |||�|||op = 1.
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After generating the matrix X of n i.i.d. samples from the appropriate graphical
model, with covariance matrix �x = �−1, we generated the corrupted matrix Z =
X +W with �w = (0.2)2I in the additive noise case, or the missing data matrix Z

with ρ = 0.2 in the missing data case.
Panels (a) and (c) in Figure 5 show the rescaled �2-error 1√

k
|||�̂ − �|||op plot-

ted against the sample size n for a chain-structured graph. In panels (b) and (d),
we have �2-error plotted against the rescaled sample size, n/(k logp). Once again,
we see good agreement with the theoretical predictions. We have obtained qualita-
tively similar results for the star and Erdős–Renyi graphs.

(a) (b)

(c) (d)

FIG. 5. (a) Plots of the error |||�̂ − �|||op after running projected gradient descent on the noncon-
vex objective for a chain-structured Gaussian graphical model with additive noise. As predicted by
Theorems 1 and 2, all curves align when the error is rescaled by 1√

k
and plotted against the ratio

n
k logp

, as shown in (b). Plots (c) and (d) show the results of simulations on missing data sets. Each
point represents the average over 50 trials.
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5. Proofs. In this section, we prove our two main theorems. For the more
technical proofs of the corollaries, see the supplementary Appendix [9].

5.1. Proof of Theorem 1. Let L(β) = 1
2βT 	̂β − 〈γ̂ , β〉 + λn‖β‖1 denote the

loss function to be minimized. This definition captures both the estimator (2.4)
with λn = 0 and the estimator (2.7) with the choice of λn given in the theorem
statement. For either estimator, we are guaranteed that β∗ is feasible and β̂ is
optimal for the program, so L(β̂) ≤ L(β∗). Indeed, in the regularized case, the k-
sparsity of β∗ implies that ‖β∗‖1 ≤ √

k‖β∗‖2 ≤ b0
√

k. Defining the error vector
ν̂ := β̂ − β∗ and performing some algebra leads to the equivalent inequality

1
2 ν̂T 	̂ν̂ ≤ 〈̂

ν, γ̂ − 	̂β∗〉 + λn

{∥∥β∗∥∥
1 − ∥∥β∗ + ν̂

∥∥
1

}
.(5.1)

In the remainder of the proof, we first derive an upper bound for the right-hand
side of this inequality. We then use this upper bound and the lower-RE condition
to show that the error vector ν̂ must satisfy the inequality

‖ν̂‖1 ≤ 8
√

k‖ν̂‖2.(5.2)

Finally, we combine inequality (5.2) with the lower-RE condition to derive a lower
bound on the left-hand side of the basic inequality (5.1). Combined with our earlier
upper bound on the right-hand side, some algebra yields the claim.

Upper bound on right-hand side. We first upper-bound the right-hand side of
inequality (5.1). Hölder’s inequality gives 〈̂ν, γ̂ − 	̂β∗〉 ≤ ‖ν̂‖1‖γ̂ − 	̂β∗‖∞. By
the triangle inequality, we have

∥∥γ̂ − 	̂β∗∥∥∞ ≤ ∥∥γ̂ − �xβ
∗∥∥∞ + ∥∥(�x − 	̂)β∗∥∥∞

(i)≤ 2ϕ(Q, σε)

√
logp

n
,

where inequality (i) follows from the deviation conditions (3.2). Combining the
pieces, we conclude that

〈̂
ν, γ̂ − 	̂β∗〉 ≤ 2‖ν̂‖1ϕ(Q, σε)

√
logp

n
(5.3)

= (‖ν̂S‖1 + ‖ν̂Sc‖1
)
2ϕ(Q, σε)

√
logp

n
.

On the other hand, we have∥∥β∗ + ν̂
∥∥

1 − ∥∥β∗∥∥
1 ≥ {∥∥β∗

S

∥∥
1 − ‖ν̂S‖1

} + ‖ν̂Sc‖1 − ∥∥β∗∥∥
1

(5.4)
= ‖ν̂Sc‖1 − ‖ν̂S‖1,
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where we have exploited the sparsity of β∗ and applied the triangle inequality.
Combining the pieces, we conclude that the right-hand side of inequality (5.1) is
upper-bounded by

2ϕ(Q, σε)

√
logp

n

(‖ν̂S‖1 + ‖ν̂Sc‖1
) + λn

{‖ν̂S‖1 − ‖ν̂Sc‖1
}
,(5.5)

a bound that holds for any nonnegative choice of λn.

Proof of inequality (5.2). We first consider the constrained program (2.4),
with R = ‖β∗‖1, so ‖β̂‖1 = ‖β∗ + ν̂‖1 ≤ ‖β∗‖1. Combined with inequality (5.4),
we conclude that ‖ν̂Sc‖1 ≤ ‖ν̂S‖1. Consequently, we have the inequality ‖ν̂‖1 ≤
2‖ν̂S‖1 ≤ 2

√
k‖ν̂‖2, which is a slightly stronger form of the bound (5.2).

For the regularized estimator (2.7), we first note that our choice of λn guarantees
that the term (5.5) is at most 3λn

2 ‖ν̂S‖1 − λn

2 ‖ν̂Sc‖1. Returning to the basic inequal-
ity, we apply the lower-RE condition to lower-bound the left-hand side, thereby
obtaining the inequality

−τ

2
‖ν̂‖2

1 ≤ 1

2

(
α1‖ν̂‖2

2 − τ‖ν̂‖2
1
) ≤ 3λn

2
‖ν̂S‖1 − λn

2
‖ν̂Sc‖1.

By the triangle inequality, we have ‖ν̂‖1 ≤ ‖β̂‖1 +‖β∗‖1 ≤ 2b0
√

k. Since we have

assumed
√

kτ(n,p) ≤ ϕ(Q,σε)
b0

√
logp

n
, we are guaranteed that

τ(n,p)

2
‖ν̂‖2

1 ≤ ϕ(Q, σε)

√
logp

n
‖ν̂‖1 ≤ λn

4
‖ν̂‖1

by our choice of λn. Combining the pieces, we conclude that

0 ≤ 3λn

2
‖ν̂S‖1 − λn

2
‖ν̂Sc‖1 + λn

4

(‖ν̂S‖1 + ‖ν̂Sc‖1
) = 7λn

4
‖ν̂S‖1 − λn

4
‖ν̂Sc‖1

and rearranging implies ‖ν̂Sc‖1 ≤ 7‖ν̂S‖1, from which we conclude that ‖ν̂‖1 ≤
8
√

k‖ν̂‖2, as claimed.

Lower bound on left-hand side. We now derive a lower bound on the left-hand
side of inequality (5.1). Combining inequality (5.2) with the RE condition (2.12)
gives

ν̂T 	̂ν̂ ≥ α1‖ν̂‖2
2 − τ(n,p)‖ν̂‖2

1 ≥ {
α1 − 64kτ(n,p)

}‖ν̂‖2
2 ≥ α1

2
‖ν̂‖2

2,(5.6)

where the final step uses our assumption that kτ(n,p) ≤ α1
128 .

Finally, combining bounds (5.5), (5.2) and (5.6) yields

α1

4
‖ν̂‖2

2 ≤ 2 max

{
2ϕ(Q, σε)

√
logp

n
,λn

}
‖ν̂‖1

≤ 32
√

k max

{
ϕ(Q, σε)

√
logp

n
,λn

}
‖ν̂‖2,
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giving inequality (3.4a). Using inequality (5.2) again gives inequality (3.4b).

5.2. Proof of Theorem 2. We begin by proving the claims for the constrained
problem, and projected gradient descent. For the �2-error bound, we make use of
Theorem 1 in the pre-print of Agarwal et al. [1]. Their theory, as originally stated,
requires that the loss function be convex, but a careful examination of their proof
shows that their arguments hinge on restricted strong convexity and smoothness
assumptions, corresponding to a more general version of the lower- and upper-RE
conditions given here. Apart from these conditions, the proof exploits the fact that
the sub-problems defining the gradient updates (2.14) and (2.15) are convex. Since
the loss function itself appears only in a linear term, their theory still applies.

In order to apply Theorem 1 in their paper, we first need to compute the toler-
ance parameter ε2 defined there; since β∗ is supported on the set S with |S| = k

and the RE conditions hold with τ � logp
n

, we find that

ε2 ≤ c
logp

α2n

(√
k
∥∥β̂ − β∗∥∥

2 + 2
∥∥β̂ − β∗∥∥

1

)2

≤ c′
2
k logp

α2n

∥∥β̂ − β∗∥∥2
2 + c1

logp

α2n

∥∥β̂ − β∗∥∥2
1

≤ c2
∥∥β̂ − β∗∥∥2

2 + c1
logp

α2n

∥∥β̂ − β∗∥∥2
1,

where the final inequality makes use of the assumption that n � k logp. Similarly,
we may compute the contraction coefficient to be

γ =
(

1 − α1

α2
+ c1k logp

α2n

)(
1 − c2k logp

α2n

)−1

,(5.7)

so γ ∈ (0,1) for n � k logp.
We now establish the �1-error bound. First, let �t := βt − β∗. Since βt is fea-

sible and β̂ is optimal with an active constraint, we have ‖βt‖1 ≤ ‖β̂‖1. Applying
the triangle inequality gives

‖β̂‖1 ≤ ∥∥β∗∥∥
1 + ∥∥β̂ − β∗∥∥

1 = ∥∥β∗
S

∥∥
1 + ∥∥β̂ − β∗∥∥

1,∥∥βt
∥∥

1 = ∥∥β∗ + �t
∥∥

1 ≥ ∥∥β∗
S + �t

Sc

∥∥
1 − ∥∥�t

S

∥∥
1 = ∥∥β∗

S

∥∥
1 + ∥∥�t

Sc

∥∥
1 − ∥∥�t

S

∥∥
1;

combining the bounds yields ‖�t
Sc‖1 ≤ ‖�t

S‖1 + ‖β̂ − β∗‖1. Then∥∥�t
∥∥

1 ≤ 2
∥∥�t

S

∥∥
1 + ∥∥β̂ − β∗∥∥

1 ≤ 2
√

k
∥∥�t

∥∥
2 + ∥∥β̂ − β∗∥∥

1,

so∥∥βt − β̂
∥∥

1 ≤ ∥∥β̂ − β∗∥∥
1 + ∥∥�t

∥∥
1 ≤ 2

√
k
(∥∥βt − β̂

∥∥
2 + ∥∥β̂ − β∗∥∥

2

) + 2
∥∥β̂ − β∗∥∥

1.

Turning to the Lagrangian version, we exploit Theorem 2 in Agarwal et al. [1],
with M corresponding to the subspace of all vectors with support contained within
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the support set of β∗. With this choice, we have ψ(M) = √
k, and the contraction

coefficient γ takes the previous form (5.7), so that the assumption n � k logp

guarantees that γ ∈ (0,1). It remains to verify that the requirements are satisfied.
From the conditions in our Theorem 2 and using the notation of Agarwal et al. [1],
we have β(M) = O(

logp
n

) and ρ = √
k, and the condition n � k logp implies that

ξ(M) = O(1). Putting together the pieces, we find that the compound tolerance
parameter ε2 satisfies the bound ε2 = O(

k logp
n

‖β̂ −β∗‖2
2) = O(‖β̂ −β∗‖2

2), so the
claim follows.

6. Discussion. In this paper, we formulated an �1-constrained minimization
problem for sparse linear regression on corrupted data. The source of corruption
may be additive noise or missing data, and although the resulting objective is not
generally convex, we showed that projected gradient descent is guaranteed to con-
verge to a point within statistical precision of the optimum. In addition, we estab-
lished �1- and �2-error bounds that hold with high probability when the data are
drawn i.i.d. from a sub-Gaussian distribution, or drawn from a Gaussian vector au-
toregressive process. Finally, we applied our methods to sparse inverse covariance
estimation for a Gaussian graphical model with corruptions, and obtained spectral
norm rates of the same order as existing rates for uncorrupted, i.i.d. data.

Future directions of research include studying more general types of dependen-
cies or corruption in the covariates of regression, such as more general types of
multiplicative noise, and performing sparse linear regression for corrupted data
with additive noise when the noise covariance is unknown and replicates of the
data may be unavailable. As pointed out by a reviewer, it would also be interesting
to study the performance of our algorithms on data that are not sub-Gaussian, or
even under model mismatch. In addition, one might consider other loss functions,
where it is more difficult to correct the objective for corrupted covariates. Finally, it
remains to be seen whether or not our techniques—used to show that certain non-
convex problems can solved to statistical precision—can be applied more broadly.
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SUPPLEMENTARY MATERIAL

Supplementary material for: High-dimensional regression with noisy and
missing data: Provable guarantees with nonconvexity (DOI: 10.1214/12-
AOS1018SUPP; .pdf). Due to space constraints, we have relegated technical de-
tails of the remaining proofs to the supplement [9].

http://dx.doi.org/10.1214/12-AOS1018SUPP
http://dx.doi.org/10.1214/12-AOS1018SUPP
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