129 research outputs found

    Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces

    Get PDF
    A novel strictly anaerobic, cellobiose-degrading bacterium, strain Cello, was isolated from a human faecal sample by combining enrichments in liquid and soft-agar basal media. A noteworthy characteristic was its inability to grow on normal agar plates and in roll tubes. The cells were coccus shaped and non-motile, with an extracellular slime layer. Growth of strain Cello T occurred between 20 and 40 degreesC, with optimal growth at 37 degreesC. The pH range for growth was 5-7-5 with an optimum at 6-5. In pure culture, strain Cello T could only grow on a variety of sugars. Glucose was converted to acetate, ethanol and H-2. The doubling time on glucose was 0.5 h. In a syntrophic co-culture with Methanospirillum hungatei strain JF-1(T), strain Cello(T) converted glucose to acetate and H-2. The G+C content was 59.2 mol%. 16S rDNA analysis revealed that the closest relatives of strain Cello(T) were two uncultured bacteria from anaerobic digesters, both with 94% 16S rDNA sequence similarity. The closest cultured representatives belong to genera of the bacterial division 'Verrucomicrobia'. The name Victivallis vadensis gen. nov., sp. nov. is proposed for strain Cello(T) (=DSM 14823(T) =ATCC BAA-548(T))

    Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei

    Get PDF
    Transcription of genes coding for formate dehydrogenases (fdh genes) and hydrogenases (hyd genes) in Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied following growth under different conditions. Under all conditions tested, all fdh and hyd genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown S. fumaroxidans cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of M. hungatei might be involved in the energy-dependent reduction of CO2 to formylmethanofuran. The best candidates for F420-dependent N5,N10-methyl-H4 MPT and N5,N10,-methylene-H4MPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of S. fumaroxidans and M. hungatei, less energy was available for S. fumaroxidans. This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several fdh and hyd genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenase

    Gelria glutamica gen. nov., sp. a thermophilic oligately syntrophic glutamate-degrading anaerobe

    Get PDF
    A novel anaerobic, Gram-positive, thermophilic, spore-forming, obligately syntrophic, glutamate-degrading bacterium, strain TGO(T), was isolated from a propionate-oxidizing methanogenic enrichment culture. The axenic culture was obtained by growing the bacterium on pyruvate. Cells were rod-shaped and non-motile. The optimal temperature for growth was 50--55 degrees C and growth occurred between 37 and 60 degrees C. The pH range for growth was 5.5--8 with optimum growth at pH 7. In pure culture, strain TGO(T) could grow on pyruvate, lactate, glycerol and several sugars. In co-culture with the hydrogenotrophic methanogen Methanobacterium thermautotrophicum strain Z-245, strain TGO(T) could grow on glutamate, proline and Casamino acids. Glutamate was converted to H(2), CO(2), propionate and traces of succinate. Strain TGO(T) was not able to utilize sulphate, sulphite, thiosulphate, nitrate or fumarate as electron acceptors. The G C content was 33.8 mol%. Sequence analysis of the 16S rDNA revealed that strain TGO(T) belongs to the thermophilic, endospore-forming anaerobes, though no close relations were found. Its closest relations were Moorella glycerini (92%) and Moorella thermoacetica (90%). Strain TGO(T) had an unusually long 16S rDNA of more than 1700 bp. The additional base pairs were found as long loops in the V1, V7 and V9 regions of the 16S rDNA. However, the loops were not found in the 16S rRNA. The name Gelria glutamica gen. nov., sp. nov. is proposed for strain TGO(T)

    Energie uit rioolwater en keukenafval bij hoge druk

    Get PDF
    Decentrale sanitatie als invulling van een duurzame waterketen is bedacht in Wageningen en tussen 2002 en 2005 door een aantal partijen in het noorden van Nederland ontwikkeld tot een bruikbaar concept. Het demonstratieproject DeSaH in Sneek heeft laten zien dat het toepassen van decentrale sanitatie en hergebruik veel mogelijkheden biedt en zeker ook een aantal aanknopingspunten voor verdere ontwikkelingen. De resultaten van het innovatieve concept kunnen echter nog aanzienlijk worden verbeterd. Ondergetekenden zijn na het ontwerp voor het project in Sneek het laboratorium ingedoken, om met nieuwe partijen te werken aan de verbetering van de efficiency, de energieprestatie en de marktpotentie van het concept. Het resultaat is een nieuwe zuiveringstechnologie: hogedrukgistin

    Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium

    Get PDF
    The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain Muc(T), was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain Muc(T) was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain Muc(T) could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G+C content of DNA from strain Muc(T) was 47.6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain Muc(T) was Verrucomicrobium spinosum (92% sequence similarity). Remarkably, the 16S rRNA gene sequence of strain Muc(T) showed 99% similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain Muc(T) represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., so. nov. is proposed; the type strain is Muc(T) ( = ATCC BAA-835(T) = CIP 107961(T))

    Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Get PDF
    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic aci

    Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans

    Get PDF
    Biological sulfate (SO4) reduction with carbon monoxide (CO) as electron donor was investigated. Four thermophilic SO4-reducing bacteria, Desulfotomaculum thermoacetoxidans (DSM 5813), Thermodesulfovibrio yellowstonii (ATCC 51303), Desulfotomaculum kuznetsovii (DSM 6115; VKM B-1805), and Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum (DSM 14055), were studied in pure culture and in co-culture with the thermophilic carboxydotrophic bacterium Carboxydothermus hydrogenoformans (DSM 6008). D. thermoacetoxidans and T. yellowstonii were extremely sensitive to CO: their growth on pyruvate was completely inhibited at CO concentrations above 2% in the gas phase. D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were less sensitive to CO. In pure culture, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were able to grow on CO as the only electron donor and, in particular in the presence of hydrogen/carbon dioxide, at CO concentrations as high as 50-70%. The latter SO4 reducers coupled CO oxidation to SO4 reduction, but a large part of the CO was converted to acetate. In co-culture with C. hydrogenoformans, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum could even grow with 100% CO (P CO=120 kPa)

    The rhizosphere selects for particular groups of acidobacteria and verrucomicrobia

    Get PDF
    There is a lack in our current understanding on the putative interactions of species of the phyla of Acidobacteria and Verrucomicrobia with plants. Moreover, progress in this area is seriously hampered by the recalcitrance of members of these phyla to grow as pure cultures. The purpose of this study was to investigate whether particular members of Acidobacteria and Verrucomicrobia are avid colonizers of the rhizosphere. Based on previous work, rhizosphere competence was demonstrated for the Verrucomicrobia subdivision 1 groups of Luteolibacter and Candidatus genus Rhizospheria and it was hypothesized that the rhizosphere is a common habitat for Acidobacteria subdivision 8 (class Holophagae). We assessed the population densities of Bacteria, Verrucomicrobia subdivision 1 groups Luteolibacter and Candidatus genus Rhizospheria and Acidobacteria subdivisions 1, 3, 4, 6 and Holophagae in bulk soil and in the rhizospheres of grass, potato and leek in the same field at different points in time using real-time quantitative PCR. Primers of all seven verrucomicrobial, acidobacterial and holophagal PCR systems were based on 16S rRNA gene sequences of cultivable representatives of the different groups. Luteolibacter, Candidatus genus Rhizospheria, subdivision 6 acidobacteria and Holophaga showed preferences for one or more rhizospheres. In particular, the Holophaga 16S rRNA gene number were more abundant in the leek rhizosphere than in bulk soil and the rhizospheres of grass and potato. Attraction to, and colonization of, leek roots by Holophagae strain CHC25 was further shown in an experimental microcosm set-up. In the light of this remarkable capacity, we propose to coin strain CHC25 Candidatus Porrumbacterium oxyphilus (class Holophagae, Phylum Acidobacteria), the first cultured representative with rhizosphere competenc

    Microbial Community Analysis of a Methane-Producing Biocathode in a bioelectrochemical System

    Get PDF
    A methane-producing biocathode that converts CO2 into methane was studied electrochemically and microbiologically. The biocathode produced methane at a maximum rate of 5.1¿L¿CH4/m2 projected cathode per day (1.6¿A/m2) at -0.7¿V versus NHE cathode potential and 3.0¿L¿CH4/m2 projected cathode per day (0.9¿A/m2) at -0.6¿V versus NHE cathode potential. The microbial community at the biocathode was dominated by three phylotypes of Archaea and six phylotypes of bacteria. The Archaeal phylotypes were most closely related to Methanobacterium palustre and Methanobacterium aarhusense. Besides methanogenic Archaea, bacteria seemed to be associated with methane production, producing hydrogen as an intermediate. Biomass density varied greatly with part of the carbon electrode covered with a dense biofilm, while only clusters of cells were found on other parts. Based on our results, we discuss how inoculum enrichment and changing operational conditions may help to increase biomass density and to select for microorganisms that produce methane
    • …
    corecore