Appl Microbiol Biotechnol (2005) 68: 390–396 DOI 10.1007/s00253-004-1878-x

APPLIED MICROBIAL AND CELL PHYSIOLOGY

S. N. Parshina · S. Kijlstra · A. M. Henstra · J. Sipma · C. M. Plugge · A. J. M. Stams

Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with *Carboxydothermus hydrogenoformans*

Received: 30 September 2004 / Revised: 8 December 2004 / Accepted: 13 December 2004 / Published online: 27 January 2005 © Springer-Verlag 2005

Abstract Biological sulfate (SO₄) reduction with carbon monoxide (CO) as electron donor was investigated. Four thermophilic SO₄-reducing bacteria, *Desulfotomaculum* thermoacetoxidans (DSM 5813), Thermodesulfovibrio yellowstonii (ATCC 51303), Desulfotomaculum kuznetsovii (DSM 6115; VKM B-1805), and Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum (DSM 14055), were studied in pure culture and in co-culture with the thermophilic carboxydotrophic bacterium Carboxydothermus hydrogenoformans (DSM 6008). D. thermoacetoxidans and T. vellowstonii were extremely sensitive to CO: their growth on pyruvate was completely inhibited at CO concentrations above 2% in the gas phase. D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were less sensitive to CO. In pure culture, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum were able to grow on CO as the only electron donor and, in particular in the presence

S. N. Parshina (🖂)

Laboratory of Microbiology of Anthropogenic Environments, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60 let Oktyabrya, 7-2, 117811 Moscow, Russia e-mail: Sonjaparshina@mail.ru Tel.: +7-095-1356553 Fax: +7-095-1356530

S. Kijlstra Shell Global Solutions International, B.V. P.O. Box 38000, 1030 BN Amsterdam, The Netherlands

A. M. Henstra · C. M. Plugge · A. J. M. Stams Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands

J. Sipma

Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen, The Netherlands of hydrogen/carbon dioxide, at CO concentrations as high as 50–70%. The latter SO₄ reducers coupled CO oxidation to SO₄ reduction, but a large part of the CO was converted to acetate. In co-culture with *C. hydrogenoformans*, *D. kuznetsovii* and *D. thermobenzoicum* subsp. *thermosyntrophicum* could even grow with 100% CO ($P_{\rm CO}$ =120 kPa).

Introduction

A mesophilic process that applies biological reduction of sulfate (SO_4) /sulfite (SO_3) to hydrogensulfide (H_2S) , and subsequent biological conversion of the produced H_2S to elemental sulfur (S), is suggested as a cost-effective method for the removal of S compounds from waste streams (Maree et al. 1987; Lens et al. 1998). Thermophilic treatment of SO_4/SO_3 rich wastewater is an attractive alternative for the currently employed mesophilic treatment of hot wastewater of paper and pulp industries or for the conventional process of flue gas desulfurization.

Many SO₄-rich wastewaters are poor in organic matter. Therefore, a supply of an appropriate electron donor is essential to reduce SO₄. Hydrogen (H₂) is an excellent electron donor for SO₄ reduction (Widdel and Hansen 1992; van Houten et al. 1994, 1997). Synthesis gas is a cheap source of H₂-rich gas. It is produced by steam reforming of natural gas or by thermal gasification of coal, oil, biomass, or other organic matter (Graboski 1984). Synthesis gas, depending on its origin, typically contains H₂ (30–76 vol%), carbon monoxide [(CO) 15–59 vol%], carbon dioxide [(CO₂) 8–27 vol%], and traces of methane, nitrogen (N₂), and hydrogen sulfide (H₂S) (Perry et al. 1997). The major restriction of synthesis gas utilization for biological S removal is the relative high percentage of CO.

Some SO₄-reducing bacteria can use CO as an electron donor (Mörsdorf et al. 1992; Davidova et al. 1994). Nevertheless, they are also strongly inhibited by CO (Davidova et al. 1994). *Desulfotomaculum orientis* and *Desulfotomaculum nigrificans* grow slowly on CO up to 20% in the gas phase (Klemps et al. 1985), as does *Desulfovibrio desulfuricans* (Karpilova et al. 1983). *Desulfovibrio vul-* garis oxidizes CO (maximum 4.5%) to CO_2 coupled to H_2 formation, which is subsequently used as an electron donor for SO₄ reduction (Lupton et al. 1984). Biological SO₄ reduction with a H₂/CO mixture as electron donor was studied in mesophilic lab-scale gas-lift reactors (van Houten et al. 1996). SO₄ reduction was observed with 20% of CO in the feed gas. However, 5% CO already resulted in lower rates of SO₄ reduction. The microbial population of the CO-fed reactor mainly consisted of Desulfovibrio and Acetobacterium species. The authors speculated that a main part of the CO was converted by homoacetogens, preventing CO toxicity for SO₄-reducing bacteria. Several anaerobic bioreactor sludges at 55°C were able to convert 100% CO in SO₄-free media to H_2 or to methane via H_2 as intermediate (Sipma et al. 2003). Recently, it was demonstrated that in anaerobic bioreactor sludges, both CO and H₂ were used by SO₄-reducing bacteria that tolerated and used high CO (P_{co} >1.6 bar) concentrations (Sipma et al. 2004).

Thus, current knowledge indicates that synthesis gas is poorly suitable as electron donor for SO₄ reduction under mesophilic conditions due to the sensitivity of SO₄-reducing bacteria towards CO. The mechanism of CO inhibition of SO₄ reduction is poorly understood. Here, we aim to avoid or reduce the effect of CO inhibition on SO₄ reduction, starting from two perspectives. Recent findings indicate that CO is better tolerated under thermophilic conditions, as illustrated above. We selected four thermophilic SO₄-reducing bacteria capable of chemolithoautotrophic growth with SO₄: Desulfotomaculum thermoacetoxidans (Min and Zinder 1990), Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum (Plugge et al. 2002), Desulfotomaculum kuznetsovii (Nazina et al. 1988), and Thermodesulfovibrio vellowstonii (Henry et al. 1994). D. kuznetsovii (Nazina et al. 1988) and D. thermoacetoxidans (Min and Zinder 1990) were characterized as a SO_4 reducers able to convert organic substrates completely to CO_2 coupled to SO_4 reduction. D. thermobenzoicum subsp. thermosyntrophicum (Plugge et al. 2002) and T. yellowstonii (Henry et al. 1994) oxidize organic substrates incompletely to acetate coupled to SO_4 reduction. D. thermobenzoicum subsp. thermosyntrophicum (Plugge et al. 2002) and D. thermoacetoxidans (Min and Zinder 1990) produce actetate and SO_4 during growth on H_2/CO_2 plus SO₄. These four strains have not been tested previously with CO. Conversion of CO to H_2 by thermophilic anaerobes may provide additional means to avoid CO inhibition. An increasing number of anaerobes grow by the conversion of CO to H₂ but do not reduce SO₄ (Fardeau 2004; Sokolova et al. 2001, 2002, 2004a, b; Svetlichnyi et al. 1991, 1994). Formation of H₂ and removal of CO by these bacteria may remove inhibition and thus stimulate SO₄ reduction. For this purpose, Carboxydothermus hydrogenoformans was selected and used in co-culture with the selected SO₄ -reducing bacteria. Our results demonstrate the potential of thermophilic SO₄ reduction with synthesis gas. Further insight in CO inhibition on SO₄reducing bacteria is provided as well.

391

Materials and methods

Bacterial strains and growth conditions

The following bacterial strains were used in the experiments: C. hydrogenoformans (DSM 6008) (Svetlichniy et al. 1991), D. thermoacetoxidans (DSM 5813) (Min and Zinder 1990), D. thermobenzoicum subsp. thermosyntrophicum (DSM 14055) (Plugge et al. 2002), D. kuznetsovii (DSM 6115; VKM B-1805) (Nazina et al. 1988), and T. vellowstonii (ATCC 51303) (Henry et al. 1994). Bacteria were grown anaerobically in a basal mineral bicarbonate-phosphate buffered medium that contained (in g/l of demineralized water) KH_2PO_4 (0.38), Na_2HPO_4 (0.54), NH₄Cl (0.3), NaCl (0.3), CaCl₂·2H₂O (0.11), MgCl₂· 6H₂O (0.1), NaHCO₃ (2.4), Na₂S·9H₂O (0.29), resazurin (0.0005), yeast extract (0.5 g/l), trace elements (1 ml), and vitamins (1 ml). Trace elements and vitamins were prepared as described by Stams et al. (1993). Sodium sulfate (20 mM) was added for the cultivation of SO₄-reducing bacteria. When indicated, 10 mM sodium pyruvate and 10 mM sodium sulfate were supplied. Bacteria were grown in 250-ml or 120-ml serum bottles that contained 50 ml medium and were sealed with butyl rubber stoppers and aluminum caps. The precultures were grown on H_2/CO_2 plus SO₄, for experiments with pure CO precultures were grown on 20% CO plus SO₄. In all experiments, the inoculum size was 5% of each species of bacteria. The headspace was flushed with H_2/CO_2 (80:20), CO, or different ratios of CO/N₂, CO/H₂, and CO/H₂/CO₂. The protocol for making the gas phase was as follows: 120-ml bottles with 50 ml of medium were flushed with N_2 . Vacuum (0.2 bar) was created in the bottles, and CO was added to give a volume percentage (vol%) in the gas phase of 5, 20, 50 or 70 vol%. Then, N₂, H₂, or H_2/CO_2 was added to a pressure of 120 kPa (100 kPa=1 bar). For cultivation of T. vellowstonii with H₂/CO₂, 2 mM acetate was supplied as additional carbon source. When CO₂ was not present in the gas phase, bicarbonate was omitted from the medium and a two- to threefold higher concentration of phosphate buffer was added. Media were maintained at a pH of about 7.0. Bacteria were incubated at 60°C standing or shaken (150 rpm). For growth on CO, 2–100% of CO was initially used.

Substrates and products analyses

 H_2 and CO were analyzed by a Chrompack gas chromatograph (CP9001) equipped with a TCD-detector. The capillary column was filled with fused silica (Molsieve 5A, 30 m × 0.53 mm). The oven temperature was 50°C, and the temperature of the TCD-detector was 100°C; argon was the carrier gas. Volatile free fatty acids were analyzed by HPLC as described by Stams et al. (1993). H_2S was analyzed according to Trüper and Schlegel (1964). Concentration of gaseous and liquid compounds after the analyses was expressed in mmol per liter of medium.

Results

Growth of pure cultures on pyruvate in the presence of CO

The thermophilic SO₄-reducing bacteria used in this research have different temperature optima and temperature limits. *T. yellowstonii* grows up to 70°C, and *D. kuznetsovii* is able to grow up to 85°C, while the other tested SO₄reducing bacteria cannot grow above 65°C. *C. hydrogenoformans* has an optimum growth temperature of 70°C, but it grows well at 60°C. Therefore, all experiments were performed at 60°C. All selected SO₄-reducing bacteria can grow on H₂/CO₂ with SO₄ as electron acceptor. In standing cultures at 60°C all H₂ was converted within 12 days (data not shown).

Some mesophilic SO₄-reducing bacteria can grow with CO (or their growth is improved) only in the presence of organic carbon sources (Karpilova et al. 1983; Lupton et al. 1984). The CO sensitivity of the selected thermophilic SO₄-reducing bacteria was tested by cultivation (without shaking) in a medium that contained pyruvate (10 mM) and SO₄ (10 mM) under an atmosphere of 0, 2, 5, 20, or 50% CO. All tested bacteria were able to ferment pyruvate without a CO-containing gas phase. Nevertheless, no vis-

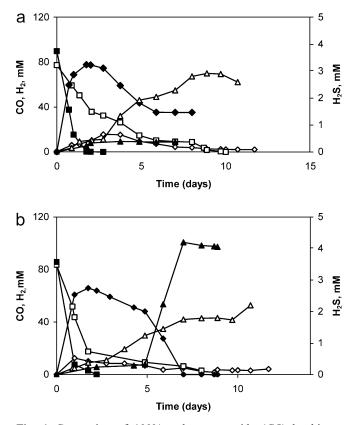


Fig. 1 Conversion of 100% carbon monoxide (CO) by binary culture of Carboxydothermus hydrogenoformans plus SO₄-reducing bacteria at standing (open symbols) and shaking (closed symbols) conditions. Squares carbon monoxide (CO), rhombuses hydrogen (H_2), triangles hydrogen sulfide (H_2S). **a** C. hydrogenoformans plus Desulfotomaculum kuznetsovii. **b** C. hydrogenoformans plus Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum

ible growth of *D. thermoacetoxidans* and *T. yellowstonii* was observed when 2% CO was added. *D. kuznetsovii and D. thermobenzoicum* subsp. *thermosyntrophicum* grew with pyruvate under all tested CO concentrations.

Chemolithoautotrophic CO conversion by co-cultures

C. hydrogenoformans converts CO to H_2 and CO_2 and may, thus, relieve the CO toxicity for thermophilic SO₄-reducing bacteria in the binary cultures. The two SO₄-reducing bacteria, that were the most sensitive for CO, *D. thermoacetoxidans* and *T. yellowstonii*, were incubated with 20% and 50% CO as the only electron donor in co-culture with *C. hydrogenoformans*. CO was consumed, but no SO₄ reduction was observed (data not shown).

The co-cultures of C. hydrogenoformans and D. kuznetsovii or D. thermobenzoicum subsp. thermosyntrophicum, grown with 100% CO as sole carbon and energy source in standing cultures, converted CO and reduced SO₄ (Fig. 1a, b). When shaken, CO conversion and formation of H_2 by both co-cultures (Fig. 1a, b) occurred faster, but the fate of H₂ was different. When C. hydrogenoformans was cultivated with D. kuznetsovii without shaking (Fig. 1a), H_2 was formed gradually, and it was also consumed gradually. Overall, the H₂ concentration remained low. H₂ consumption coincided with H₂S formation. At the end of the experiment, 4.3 mM acetate was formed. Under shaken conditions, H₂ accumulated rapidly, and its further conversion occurred slowly (Fig. 1a). SO₄ reduction was inhibited (only 0.4 mM H₂S was formed) and H₂ was not consumed completely. More acetate (6.6 mM) was formed compared with the standing cultures. When C. hydrogenoformans was cultivated with D. thermobenzoicum subsp. thermosyntrophicum in standing cultures (Fig. 1b), the rates of H₂ formation and SO₄ reduction were similar to the rates in the co-culture with D. kuznetsovii (Fig. 1a). Under shaken conditions, H₂ was formed fast, but only after all CO was converted, the H₂ concentration decreased and SO₄ was reduced (Fig. 1b). At the end of the exeriment, the acetate concentration was 4 mM in standing cultures and 7.5 mM in shaken cultures.

Conversion of mixtures of H₂ and CO by pure cultures and co-cultures

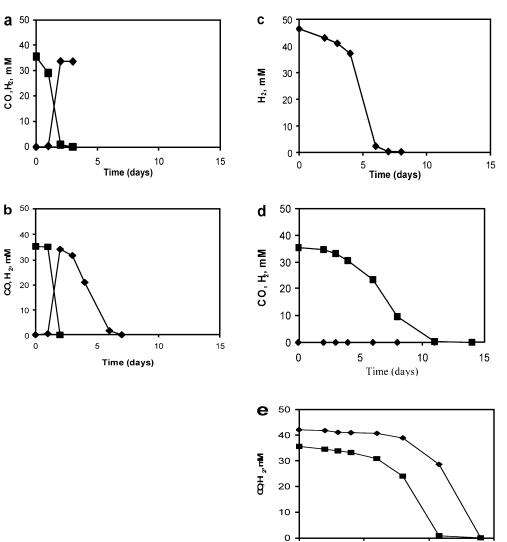
D. kuznetsovii and *D. thermobenzoicum* subsp. *thermo-syntrophicum* were cultivated in the presence of SO₄, shaken with 0, 5, 20, 50 and 70% CO in the H₂/CO₂ gas phase (Table 1). Both *D. kuznetsovii* and *D. thermobenzoicum* subsp. *thermosyntrophicum* were able to convert CO, H₂, and CO₂ and reduce SO₄ (Table 1). Conversion of CO and a mixture of CO and H₂/CO₂ by *D. kuznetsovii* (Table 1) occurred slower than by *D. thermobenzoicum* subsp. *thermosyntrophicum* (Table 1). Data on 50% and 70% of CO in the H₂/CO₂ gas phase conversion by *D. kuznetsovii* are not shown. In our experiments, both SO₄-reducing bacteria formed acetate. At higher CO concentra-

Table 1 Conversion of different concentrations of carbon monoxide (*CO*) plus hydrogen/ carbon dioxide (H_2/CO_2) plus sulfate (*SO*₄) by *Desulfotomaculum kuznetsovii* and *Desulfotomaculum thermobenzoicum* subsp. *thermosyntrophicum*. H_2S Hydrogen sulfide

Gas phase	Time needed to complete degradation (days)		CO consumed	H ₂ consumed	H ₂ S formed	Acetate formed
	СО	H ₂	(mmol/l) ((mmol/l)	(mmol/l)	(mmol/l)
Desulfotomaculum k	uznetsovii					
$0 \text{ CO} + \text{H}_2/\text{CO}_2$	_	9	-	52.8	9.5	0.7
$5\% \text{ CO} + \text{H}_2/\text{CO}_2$	8	14	5.0	51.2	7.5	3.6
$20\% \text{ CO} + \text{H}_2/\text{CO}_2$	30	34	17.6	41.6	2.9	4.5
Desulfotomaculum th subsp. thermosyntro						
$0 \text{ CO} + \text{H}_2/\text{CO}_2$	_	5	_	53.1	8.3	3.5
$20\% \text{ CO} + \text{H}_2/\text{CO}_2$	7	18	16.1	43.0	7.0	7.8
50% CO + H ₂ /CO ₂	10	27	39.0	49.3	8.0	7.7
$70\% \text{ CO} + \text{H}_2/\text{CO}_2$	14	18	47.0	25.0	2.6	5.0

b; Table 2) and *D. thermobenzoicum* subsp. *thermosyntrophicum* alone with N_2 plus H_2/CO_2 , CO plus N_2 , or

CO plus H_2 in the presence of SO₄ is shown (Fig. 2c, d, e;


Table 2). The co-culture converted 50% CO in the same

time as a pure culture of C. hydrogenoformans (Fig. 2a, b).

tions, more CO was used for acetate production and less for SO_4 reduction (Table 1).

Substrate conversion by *C. hydrogenoformans* alone, *C. hydrogenoformans* in co-culture with *D. thermobenzoicum* subsp. *thermosyntrophicum* grown with 50% CO (Fig. 2a,

Fig. 2 Conversion of gases by C. hydrogenoformans and D. thermobenzoicum subsp. thermosyntrophicum at shaking conditions. a C. hydrogenoformans on 50% CO [plus nitrogen (N₂) plus SO₄]. b C. hydrogenoformans plus D. thermobenzoicum subsp. thermosyntrophicum on 50% CO (plus N₂ plus SO₄). c D. thermobenzoicum subsp. thermosyntrophicum on 50% N₂ (plus H_2/CO_2 plus SO_4). **d** D. thermobenzoicum subsp. thermosyntrophicum on 50% CO (plus N₂ plus SO₄). e D. thermobenzoicum subsp. thermosyntrophicum on 50% CO (plus H₂ plus SO₄). Squares CO, rhombuses H₂

0

5

10

Time (days)

15

394

Table 2 Growth of Carboxy-OD^a H₂S end Bacteria Gases Acetate Start dothermus hydrogenoformans concentration end (mmol/l) formed and D. thermobenzoicum subsp. (mmol/l) (mmol/l) thermosyntrophicum in the atmosphere of different gases and products formation (supplement $50\% CO + N_2 CO-37$ nd^b 0 0 C. hydrogenoformans to Fig. 2) SO_4 C. hydrogenoformans + D. thermoben-50% CO + N₂ CO-36 ndb 4.7 3.3 zoicum subsp. thermosyntrophicum + SO₄ D. thermobenzoicum subsp. thermosyn- $50\% N_2 + H_2/H_2$ -48 0.19 9.2 2.5 trophicum $CO_2 + SO_4$ D. thermobenzoicum subsp. thermosyn- 50% CO + N₂ CO-37 0.21 5.0 4.2 trophicum + SO₄ ^aOD Optical density (wave-D. thermobenzoicum subsp. thermosyn- 50% CO + H₂ CO-36 9.5 0.31 8.2 length 660 nm) trophicum $+ SO_4$ $H_{2}-42$ ^bnd Not determined

Products of CO and H₂ conversion are listed in Table 2. H₂S and a low amount of acetate (Table 2) were detected after complete conversion of H₂. When *D. thermoben-zoicum* subsp. *thermosyntrophicum* was cultivated under a N₂ /H₂/CO₂ gas phase (Fig. 2c), H₂S and a small amount of acetate were detected at the end of the experiment (Table 2). *D. thermobenzoicum* subsp. *thermosyntrophi-cum* could also grow with 50% CO and formed H₂S and acetate (Fig. 2d; Table 2). When grown on CO/H₂, more acetate was formed (Table 2). In this experiment H₂ consumption followed CO conversion (Fig. 2e) similar to the experiment with CO/H₂/CO₂ (Table 1).

Discussion

CO tolerance of selected SO₄-reducing bacteria

Experiments with D. thermoacetoxidans and T. vellowstonii with pyruvate/CO and co-cultivation of these strains with C. hydrogenoformans on 100% CO indicate that these bacteria are highly sensitive towards CO and are not applicable for biological SO₄ reduction with synthesis gas. The two other bacteria, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum, were remarkably tolerant to high CO concentrations. In pure culture, both bacteria tolerated 70% of CO during chemolithotrophic growth in the presence of SO₄. In co-culture, at standing conditions (with 100% CO), both D. kuznetsovii and D. thermobenzoicum subsp. thermopropionicum were able to reduce SO_4 with the H_2 formed by C. hydrogenoformans. However, when the cocultures were shaken, SO₄ reduction of D. kuznetsovii was inhibited and only acetate was formed. Improved gas-to-liquid mass transfer of CO during shaking most likely resulted in inhibiting CO concentration in the liquid phase. In most cases, H₂ was used for acetate formation in addition to SO₄ reduction. Only one of the four investigated bacteria, D. thermobenzoicum subsp. thermopropionicum, was capable of SO₄ reduction under 100% CO in shaken co-culture with C. hydrogenoformans.

Effect of CO on the ratio of sulfidogenesis and acetogenesis

D. thermobenzoicum subsp. thermosyntrophicum coupled the oxidation of organic substrates to acetate formation and to SO₄ reduction. Acetate was formed during growth on H_2/CO_2 as well (Plugge et al. 2002). In our experiments, D. kuznetsovii and D. thermobenzoicum subsp. thermosyntrophicum formed acetate during growth on H₂/CO₂ and different CO concentrations (Table 1). Initial amounts of H₂ were less in the bottles with higher CO concentrations. Nevertheless, more acetate was formed at high CO concentrations. At CO concentrations higher than 20% for D. kuznetsovii (data not shown) and higher than 50-70% for D. thermobenzoicum subsp. thermosyntrophicum), SO₄ reduction was partially inhibited. Thus, more CO was used for acetate formation than for SO₄ reduction. In our experiments the electron recovery was not complete in the cultures with $CO/H_2/CO_2$ mixtures. We can not exclude that other organic products could have been formed.

It has been postulated that *D. vulgaris* and *D. desulfuricans* first convert CO with H₂O to H₂ and CO₂, and then use H₂ for SO₄ reduction (Karpilova et al. 1983; Lupton et al. 1984). In our experiments with pure cultures of *D. kuznetsovii* (data not shown) and *D. thermobenzoicum* subsp. *thermosyntrophicum* grown on CO (Fig. 2d), H₂ was never detected as an intermediate of CO conversion. Instead, CO₂, acetate, and H₂S were formed as products of CO conversion. When SO₄-reducing bacteria were cocultivated with *C. hydrogenoformans*, formation of H₂ from CO by *C. hydrogenoformans* was faster than the subsequent consumption of H₂ by SO₄-reducing bacteria (Fig. 1a, b). The absence of H₂ in the gas phase (Fig. 2d) suggests a direct conversion of CO coupled to SO₄ reduction by SO₄reducing bacteria.

Inhibition of H₂ utilization and sulfidogenesis by CO

A typical curve of CO and H_2 conversion by *D. thermobenzoicum* subsp. *thermosyntrophicum* is shown in Fig. 2e. Remarkably, H_2 consumption started later than CO consumption. In another experiment, the time needed to consume all H_2 became longer at higher CO concentrations (Table 1). It is generally reasoned that hydrogenase is inhibited by CO. Observations supporting this fact are omnipresent. When the acetogenic bacterium *Eubacterium limosum* was grown with a mixture of CO and H_2 (Sharak Genthner and Bryant 1982), H_2 consumption started after the CO concentration in the gas phase had decreased to values below 5%. This observation was explained by the possible inhibition of hydrogenase by CO. A similar hydrogenase inhibition was found for other anaerobic bacteria cultivated on CO (Daniels et al. 1977; Pankhania et al. 1986; Berlier et al. 1987; Adams 1990; Bennett et al. 2000).

SO₄-reducing bacteria are generally more sensitive towards CO than acetogens. CO partial pressures of 20% are the maximum tolerated by SO₄-reducing bacteria reported so far (Klemps et al. 1985; Karpilova et al. 1983). It is unlikely that inhibition of hydrogenase by CO is the sole reason of the sensitivity of SO₄-reducing bacteria towards CO. As discussed above, a shift towards acetogenesis occurs with increasing CO concentrations. Hydrogenase plays a central role in acetogenesis as well. Recently, Rother and Metcalf (2004) demonstrated growth of a Methanosar*cina acetivorans* strain on CO. Methanogenesis was largely inhibited by high CO concentrations; acetate was formed instead. It is unclear which step of methanogenesis is inhibited. We support the authors in their statement that further investigation on the physiological mechanism of inhibition by CO is necessary and like to extend this to the SO₄-reducing bacteria.

From our data we conclude that besides SO_4 reduction with H_2 and acetogenesis from H_2 and CO_2 , *D. kuznetsovii* and *D. thermobenzoicum* subsp. *thermosyntrophicum* can convert CO to acetate and can couple CO oxidation directly to SO_4 reduction. Thus, we assume that these strains can perform the following reactions:

$$4H_2 + 2HCO_3^- + H^+ \rightarrow acetate^- + 4H_2O - 26.2 \text{ kJ/mol } H_2$$
(1)

$$\frac{4H_2 + SO_4^{2-} + H^+ \rightarrow HS^- + 4H_2O}{-38.0 \text{ kJ/mol } H_2}$$
(2)

$$4\text{CO} + 4\text{H}_2\text{O} \rightarrow \text{acetate}^- + 2\text{HCO}_3^- + 3\text{H}^+ - 41.4 \text{ kJ/mol CO}$$
(3)

$$\frac{4\text{CO} + \text{SO}_4^{2-} + 4\text{H}_2\text{O} \rightarrow 4\text{HCO}_3^{-} + \text{HS}^{-} + 3\text{H}^{-}}{-53.2 \text{ kJ/mol CO}}$$
(4)

This is the first report that provides evidence that thermophilic SO₄-reducing bacteria can grow at a high concentration (50–70%) of CO. In co-culture with *C. hy-drogenoformans* growth and SO₄ reduction of *D. thermo-benzoicum* subsp. *thermosyntrophicum* is even possible

with 100% CO. In the latter case, CO is first converted to H₂ and CO₂, which is subsequently used by the SO₄ reducer. Our results show clearly that under moderately thermophilic conditions synthesis gas with high amounts of CO is an excellent electron donor for biotechnological SO_4 reduction at a high temperature. In particular, when the SO_4 reducers are co-cultivated with carboxydotrophic bacteria, high CO concentrations are tolerated. Thus, purification of the gas to reduce the CO content is not needed. It is not certain that in the bioreactor sludges the tested bacteria are dominant. However, as moderately thermophilic carboxydotrophic bacteria and SO4-reducing bacteria can be easily enriched from different sources, it is not unlikely that they occur in bioreactors operated with CO as well. We show here unknown capacities of SO₄-reducing bacteria and possible pathways of CO conversion in bioreactors.

Our observations are important for the application of synthesis gas for biological S removal from flue gas or wastewater discharged at a high temperature.

Acknowledgements This research was financially supported by Shell Global Solutions, Paques Natural Solutions B.V., the Technology Foundation (STW) and the Earth and Life Sciences Foundation (ALW) of the Netherlands Organization of Scientific Research (NWO) (The Netherlands).

References

- Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145
- Bennett B, Lemon BJ, Peters W (2000) Reversible carbon monoxide binding and inhibition at the active site of Fe-only hydrogenase. Biochemistry 39:7455–7460
- Berlier Y, Fauque GD, LeGall J, Choi ES, Peck HD Jr, Lespinat PA (1987) Inhibition studies of three classes of *Desulfovibrio* hydrogenases: application to the further characterization of the multiple hydrogenases found in *Desulfovibrio vulgaris* Hilderborough. Biochem Biophys Res Commun 146:147–153
- Daniels LG, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132: 118–126
- Davidova MN, Tarasova NB, Mukhitova FK, Karpilova IU (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40:417–425
- Fardeau M-L, Salinas MB, L'Haridon S, Jeanthon Ch, Verhe F, Cayol J-L, Patel BKC, Garcia J-L, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to *Thermoanaerobacter subterraneus*: reassignment *T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis* and *Carboxydibrachium pacificum*, to *Caldanaerobacter subterraneus* gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474
- Graboski MS (1984) The production of synthesis gas from methane, coal and biomass. In: Herman RG (ed) Catalytic conversion of synthesis gas and alcohols to chemicals. Plenum, New York, pp 37–52
- Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium *Thermodesulfovibrio yellowstonii*, gen. nov. and sp. nov.: its phylogenetic relationship to *Thermodesulfobacterium* commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69

- Karpilova IYu, Davidova MN, Belyaeva MI (1983) The effect of carbon monoxide on the growth and CO oxidation in sulfatereducing bacteria (in Russian). Biol Nauki 1:85–88
- Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of *Desulfotomaculum* species. Arch Microbiol 143:203–208
- Lens PNL, Visser A, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88
- Lupton FS, Conrad R, Zeikus JG (1984) CO metabolism of *Desulfovibrio vulgaris* strain Madison: physiological function in the absence or presence of exogenous substrates. FEMS Microbiol Lett 23:263–268
- Maree JP, Gerber A, Hill E (1987) An integrated process for biological treatment of sulphate-containing industrial influents. J Water Pollut Control Fed 59:1069–1074
- Min H, Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium *Desulfotomaculum thermoacetoxidans* sp. nov. Arch Microbiol 153:399–404
- Mörsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Microbial growth on carbon monoxide. Biodegradation 3:61–82
- Nazina TN, Ivanova AE, Kunchaveli LP, Rozanova EP (1988) A new sporeforming thermophilic methylotrophic sulfate- reducing bacterium, *Desulfotomaculum kuznetsovii* sp nov. Mikrobiologiya 57:823–827
- Pankhania IP, Gow LA, Hamilton WA (1986) The effect of hydrogen on the growth of *Desulfovibrio vulgaris* (Hildenborough) on lactate. J Gen Microbiol 132:3349–3356
- Perry RH, Green DW, Maloney JO (1997) Perry's chemical engineers' handbook, 7th edn. McGraw-Hill, New York, pp 13–25
- Plugge C, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399
- Rother M, Metcalf W (2004) Anaerobic growth of *Methanosarcina acetivorans* C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. PNAS 101:16929–16934
- Sharak Genthner BR, Bryant MP (1982) Growth of *Eubacterium limosum* with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74
- Sipma J, Lens PNL, Stams AJM, Lettinga G (2003) Carbon monoxide conversion by anaerobic bioreactor sludges. FEMS Microbiol Ecol 44:271–277
- Sipma J, Meulepas RJW, Parshina SN, Stams AJM, Lettinga G, Lens PNL (2004) Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl Microbiol Biotechnol 64:421–428
- Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) *Carboxydibrachium pacificum* gen.nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

- Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) *Carboxydocella thermo-autotrophica* gen. nov. sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1–6
- Sokolova TG, Jeanthon Ch, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004a) The first evidence of anaerobic CO oxidation coupled with H₂ production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323
- Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004b) *Thermosinus carboxydivorans* gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359
- Stams AJM, van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
- Svetlichniy VA, Sokolova TA, Gerhardt M, Ringpfel M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov. a CO utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir island. Syst Appl Microbiol 14:254–260
- Svetlichnyi VA, Sokolova TG, Kostrikina NA, Lysenko AM (1994) A new thermophilic anaerobic carboxydotrophic bacterium *Carboxydothermus restrictus* sp. nov. Microbiology 63:294– 297
- Trüper HG, Schlegel HG (1964) Sulfur metabolism in *Thiorhodaceae*. 1.Quantitative measurement of growing cells of *Chromatium okenii*. Antonie Van Leeuwenhoek 30:225–238
- Houten RT van, HulshoffPol LW, Lettinga G (1994) Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol Bioeng 44:586–594
- Houten RT van, van der Spoel H, van Aelst AC, Hulshoff Pol LW, Lettinga G (1996) Biological sulphate reduction using synthesis gas as energy and carbon source. Biotechnol Bioeng 50:136– 144
- Houten RT van, Yu Yun S, Lettinga G (1997) Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H_2/CO_2 as energy and carbon source. Biotechnol Bioeng 55:807– 814
- Widdel F, Hansen TA (1992) The dissimilatory sulfate- and sulfurreducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 583–624