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Gelria glutamica gen. nov., sp. nov., a
thermophilic, obligately syntrophic,
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A novel anaerobic, Gram-positive, thermophilic, spore-forming, obligately
syntrophic, glutamate-degrading bacterium, strain TGOT, was isolated from a
propionate-oxidizing methanogenic enrichment culture. The axenic culture was
obtained by growing the bacterium on pyruvate. Cells were rod-shaped and
non-motile. The optimal temperature for growth was 50–55 SC and growth
occurred between 37 and 60 SC. The pH range for growth was 5<5–8 with
optimum growth at pH 7. In pure culture, strain TGOT could grow on pyruvate,
lactate, glycerol and several sugars. In co-culture with the hydrogenotrophic
methanogen Methanobacterium thermautotrophicum strain Z-245, strain TGOT

could grow on glutamate, proline and Casamino acids. Glutamate was
converted to H2, CO2, propionate and traces of succinate. Strain TGOT was not
able to utilize sulphate, sulphite, thiosulphate, nitrate or fumarate as electron
acceptors. The GMC content was 33<8 mol%. Sequence analysis of the 16S rDNA
revealed that strain TGOT belongs to the thermophilic, endospore-forming
anaerobes, though no close relations were found. Its closest relations were
Moorella glycerini (92%) and Moorella thermoacetica (90%). Strain TGOT had
an unusually long 16S rDNA of more than 1700 bp. The additional base pairs
were found as long loops in the V1, V7 and V9 regions of the 16S rDNA.
However, the loops were not found in the 16S rRNA. The name Gelria glutamica
gen. nov., sp. nov. is proposed for strain TGOT.

Keywords : thermophilic bacteria, interspecies hydrogen transfer, obligate syntrophic
glutamate oxidation, proline oxidation, propionate formation

INTRODUCTION

Because proteins are encountered in almost every
ecosystem, the biodegradation of amino acids is a very
important microbial process. The conversion of amino
acids in methanogenic environments has been studied
over the last 20 years, especially in temperate en-
vironments (Barker, 1981; Nagase & Matsuo, 1982;
McInerney, 1989). However, in moderately thermo-
philic methanogenic environments, the degradation of
amino acids has not been studied in detail. Only a few
bacterial species have been described to degrade amino
acids under thermophilic conditions (Cheng et al.,

.................................................................................................................................................

The GenBank accession number for the 16S rDNA sequence of strain TGOT

is AF321086.

1992; O> rlygsson, 1994; Tarlera et al., 1997; Plugge et
al., 2000).

Glutamate conversion under methanogenic conditions
can occur in different ways (Table 1). The formation of
acetate and butyrate as the organic end-products has
been described for many anaerobes that belong mainly
to the genus Clostridium. This type of conversion of
glutamate is hydrogen independent. Other examples of
hydrogen-independent glutamate conversions are the
homoacetogenic fermentation (Dehning et al., 1989)
and the reductive formation of propionate (Nanninga
et al., 1987). The formation of hydrogen is more likely
to occur in methanogenic environments, where hydro-
gen-scavenging methanogens convert the hydrogen to
methane with the concomitant reduction of CO

#
. In

the presence of methanogens, the free energy available
from the overall reactions is higher (Table 1). Under
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Table 1. Change of free energy for the conversion of glutamate to various products at 55 °C under anaerobic
conditions
.................................................................................................................................................................................................................................................................................................................

Energy changes were calculated using the van’t Hoff equation, standard enthalpy values of compounds (Chang, 1977) and Gibbs’
free energy changes at 298 K (Thauer et al., 1977). Values of ∆G« were calculated under standard conditions: pH 7, 1 M solutes,
1 atmosphere gases and 55 °C (328 K).

Reaction ∆G« (kJ)

105 Pa H2 1 Pa H2

Glutamate−2H
#
OU acetate−HCO−

$
"

#
H+NH+

%
"

#
butyrate− ®61±1 ®61±1

Glutamate−3H
#
OU 2acetate−HCO−

$
H+NH+

%
H

#
®41±6 ®73±1

Glutamate−2H
#
OU 2"

%
acetate−"

#
HCO−

$
$

%
H+NH+

%
®64±0 ®64±0

Glutamate−2H
#
OU 1#

$
acetate−"

$
propionate−#

$
HCO−

$
#

$
H+NH+

%
®69±0 ®69±0

Glutamate−4H
#
OUpropionate−2HCO−

$
NH+

%
2H

#
®16±0 ®79±0

standard conditions, these reactions yield small
amounts of energy. In particular, the exclusive forma-
tion of propionate from glutamate is very difficult,
since the free energy at 55 °C is only ®16±0 kJ (mol
glutamate)−" (Table 1). It is highly unlikely that a
single organism can perform this reaction. However, in
a methanogenic consortium, the hydrogen formed is
consumed via interspecies hydrogen transfer and the
energy that becomes available from this reaction
increases to ®79±0 kJ (mol glutamate)−".

Earlier research indicated the presence of a propionate-
forming, obligately syntrophic bacterium in a thermo-
philic, syntrophic, glutamate-degrading, propionate-
oxidizing enrichment (Stams et al., 1992). From this
mixed culture, we isolated a bacterium that produced
propionate as the major product from glutamate, in
addition to traces of succinate. In this paper, we
present detailed information about the organism and
we propose to name the organism Gelria glutamica
gen. nov., sp. nov.

METHODS

Strains and source of organisms. The glutamate-degrading
strain TGOT was isolated from a thermophilic, syntrophic,
propionate-oxidizing enrichment culture as described by
Stams et al. (1992). Strain TPO, a syntrophic, propionate-
oxidizing bacterium, was isolated from the same enrichment
culture. Moorella thermoacetica DSM 521T and Moorella
glycerini DSM 11254T were obtained from the DSMZ. Meth-
anobacterium thermautotrophicum Z-245 (¯DSM 3720) has
been used before ; this methanogen was recently renamed
Methanothermobacter thermautotrophicus Z-245 (Wasser-
fallen et al., 2000).

Media and cultivation. A bicarbonate-buffered medium with
the following composition was used (l−") : 0±4 g KH

#
PO

%
,

0±53 g Na
#
HPO

%
, 0±3 g NH

%
Cl, 0±3 g NaCl, 0±1 g MgCl

#
\

6H
#
O, 0±11 g CaCl

#
\ 2H

#
O, 1 ml alkaline trace element

solution, 1 ml acid trace element solution, 1 ml vitamin
solution, 0±5 mg resazurin, 4 g NaHCO

$
, 0±25 g Na

#
S \

7–9H
#
O and 0±5 g yeast extract. The trace elements and

vitamins were as described in Stams et al. (1993). All
compounds were heat-sterilized except for the vitamins and
the solution of Na

#
S \ 7–9H

#
O, which were filter-sterilized.

Incubations were done in serum bottles sealed with butyl

rubber stoppers (Rubber bv) and a gas phase of 182 kPa
N

#
}CO

#
(80:20, v}v). For the cultivation of methanogens, a

gas phase of 182 kPa H
#
}CO

#
(80:20, v}v) was used and,

after growth, the gas phase was changed to N
#
}CO

#
. Organic

substrates were added from anaerobic sterile stock solutions
to final concentrations of 20 mM (unless otherwise stated).
To obtain an axenic culture, soft agar (0±7–0±8% agar noble;
Difco) was added to the medium described above, supple-
mented with 20 mM pyruvate as the carbon source. Light
microscopy confirmed purity.

For the reconstitution experiments with axenic cultures of
strain TGOT (0±5%, v}v), strain TPO (2%, v}v) and
Methanobacterium thermautotrophicum Z-245 (2%, v}v)
were inoculated in medium with 20 mM glutamate.

Temperature and pH. The temperature optimum was
determined in bicarbonate-buffered medium containing
20 mM pyruvate at pH 7 and duplicate bottles were incu-
bated at temperatures ranging from 30 to 75 °C. The pH
optimum was tested in medium by adding 0±15 g KH

#
PO

%
l−"

instead of sodium bicarbonate. The pH value of the medium
containing 20 mM pyruvate was adjusted with NaOH or
HCl under the N

#
atmosphere. Duplicate bottles were

incubated at 55 °C at pH values ranging from 4±5 to 9±5. For
determinations of the temperature and pH optimum, OD

'!!
and acetate production were measured as indicators for
growth.

Growth and substrate utilization. Utilization of substrates
by strain TGOT in pure culture and in co-culture with
Methanobacterium thermautotrophicum Z-245 was deter-
mined by monitoring growth and substrate depletion as well
as product formation. All incubations were performed at
55 °C, pH 7. The effect of electron acceptors on the growth
of strainTGOT was tested inmediumwith 20 mMglutamate.

GC content. Isolation and purification of genomic DNA
was carried out according to Marmur (1961). The GC
content of the DNA was analysed using thermal denatura-
tion as described by Owen et al. (1969).

16S rDNA sequence analysis. Total DNA was extracted from
strain TGOT as described previously (Zoetendal et al., 1998).
PCR was performed with the bacterial primers 7f and 1510r
(Lane, 1991) by using the Taq DNA polymerase kit (Life
Technologies) to amplify the bacterial 16S rDNA. PCR
products were purified with the Qiaquick PCR purification
kit (Qiagen) according to the manufacturer’s instructions.
Primers 538r, 1100r (Lane, 1991) and 968f (Nu$ bel et al.,
1996) labelled with Infrared Dye 41 (MWG-Biotech) were
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used as sequencing primers. The sequences were analysed
automatically on a LI-COR DNA sequencer 4000L and
corrected manually. Phylogenetic analysis and tree con-
struction were performed with the programs of the 
software package (Strunk & Ludwig, 1991).  homology
searches with sequences of the EMBL and GenBank DNA
databases were performed and the results were compared
with those obtained with the  programs. Because strain
TGOT had additional loops in several regions of the 16S
rDNA, we did the database comparison with the complete
sequence of 1725 bp and also with the sequence without the
additional loops.

RNA isolation, RT–PCR and dot-blot hybridizations. RNA
was extracted from strain TGOT as described by Zoetendal
et al. (1998). Specific probes targeting the V1, V7 and V9
regions of the 16S rDNA of strain TGOT were applied
in order to investigate whether such additional loops were
also present in the 16S rRNA. The sequences of these oligo-
nucleotides were 5«-GCTCTTGGGCCTTTTGAA-3« (V1
region), 5«-GTTAACCCTCTGGCTTTG-3« (V7 region)
and 5«-CTCAATCCGCAAGTTTAA-3« (V9 region).
Primer 538r (Lane, 1991) was used as a positive control for
Eubacteria. Dot-blot hybridizations were performed with
strain TGOT, Moorella thermoacetica, Moorella glycerini
and Escherichia coli as described by Oude Elferink et al.
(1997). All membranes were hybridized overnight at 40 °C.

RT–PCR of the 16S rRNA genes of strain TGOT, Moorella
thermoacetica, Moorella glycerini and Escherichia coli was
performed by means of bacterial primers 7f and 1510r using
the Access RT–PCR system (Promega). Prior to the RT–
PCR amplification, the samples were incubated with RNase-
free DNase (Promega) to remove all traces of DNA. The
integrity and size of the nucleic acids were determined
visually after electrophoresis on a 1±2% agarose gel con-
taining ethidium bromide in the presence of markers and
compared with the 16S rDNA of strain TGOT.

Other methods. Gases and organic acids were analysed by
GC and HPLC as described by Plugge et al. (2000). Amino
acids were analysed by HPLC as described by Kengen &
Stams (1994). Occasionally, glutamate was determined
enzymically with glutamate dehydrogenase as described by
Bernt & Bergmeyer (1974). Ammonium was analysed by the
indophenol-blue method (Hanson & Philips, 1981). In-
organic compounds tested as electron acceptors were ana-
lysed by HPLC as described by Scholten & Stams (1995).
Gram and flagella staining were done by standard proce-
dures as described previously (Plugge et al., 2000).

RESULTS AND DISCUSSION

Isolation of the glutamate-oxidizing strain TGOT

A thermophilic, syntrophic, propionate-oxidizing en-
richment, as described by Stams et al. (1992), was also
able to convert glutamate to acetate, NH+

%
, HCO−

$
and

CH
%
. When the enrichment culture was growing on

glutamate, a small, rod-shaped bacterium became
predominant. It was not possible to obtain the bac-
terium in pure culture by adding an inhibitor of
methanogenesis (bromoethanesulphonic acid, BES) to
the enrichment culture. No degradation of glutamate
was observed when BES was added. The bacterium
could be purified by serial dilution in media containing
agar (0±7–0±8%) with pyruvate as the organic sub-
strate. The colonies that appeared in the agar and on

.................................................................................................................................................

Fig. 1. Phase-contrast micrograph of strain TGOT grown on
pyruvate. The arrow indicates the start of spore formation. Bar,
5 µm.

the surface of the agar were 0±7–1±0 mm in diameter.
The colonies were white and round at the surface and
lens-shaped in the agar. A single colony picked from
the agar grew in medium containing pyruvate and with
0±05% yeast extract. Repeated transfer from liquid
medium to soft-agar medium resulted in an axenic
culture of a strain designated TGOT. This strain was
characterized further.

Morphology and cellular characterization

The isolated strain TGOT is a rod-shaped, spore-
forming organism. The Gram stain was positive. Cells
were 0±5 µm in diameter and 1–1±5 µm in length when
grown on pyruvate (Fig. 1). If the bacterium was
grown on glucose, the cells were 0±5 µm in diameter
and 3–20 µm in length. Spores were located terminally
and were 0±5¬0±5 µm in size and developed in the late-
exponential phase. Motility was never observed, nor
were flagella found.

Physiological characterization

Strain TGOT was able to grow on glutamate only
in the presence of the methanogenic archaeon Meth-
anobacterium thermautotrophicum Z-245. Glutamate
(15 mM) was converted to propionate (12±9 mM),
succinate (1±0 mM), NH+

%
(14±9 mM) and CH

%
(8±9

mM). The carbon and electron recovery were re-
spectively 93 and 98% (excluding the biomass formed).
The doubling time of strain TGOT in co-culture with
Methanobacterium thermautotrophicum Z-245 on glu-
tamate was 0±23 day−". Several thermophilic bacteria
are known to utilize glutamate with the concomitant
production of H

#
, but these organisms also grow in

pure culture on glutamate. Caloramator proteoclas-
ticus, Caloramator coolhaasii and Thermanaerovibrio
acidaminovorans (Cheng et al., 1992; Tarlera & Stams,
1999; Plugge et al., 2000) are examples of such
thermophilic glutamate-degrading organisms. In pure
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.................................................................................................................................................

Fig. 2. Utilization of glutamate (U) and production of
propionate (_), acetate (+), succinate (D) and CH4 (E) by a
consortium of strain TGOT, strain TPO and Methanobacterium
thermautotrophicum Z-245. (a) Original enrichment culture as
described by Stams et al. (1992). (b) Co-culture inoculated with
0±5, 2 and 0±5% (v/v) of pure cultures of strain TGOT, strain TPO
and Methanobacterium thermautotrophicum strain Z-245.

.................................................................................................................................................

Fig. 3. Agarose gel (1±2%) showing size and integrity of
reamplified 16S rDNA (lane 3) and rRNA (lane 4) of strain TGOT

and 16S rRNA of Moorella glycerini (lane 5) and Moorella
thermoacetica (lane 6). Markers : Gene Ruler 100 bp DNA ladder
(lane 1) and phage λ DNA digested with PstI (lane 2).

culture, they form acetate, NH+

%,
CO

#
and H

#
. Ther-

manaerovibrio acidaminovorans also forms propionate
in pure culture. When Thermanaerovibrio acidamino-

vorans is grown in co-culture with a methanogen, the
products formed from glutamate conversion shift in
favour of propionate formation. However, consider-
able amounts of acetate are still formed. Examples of
mesophilic glutamate-degrading organisms that show
the same degradation products as Thermanaerovibrio
acidaminovorans are Acidaminobacter hydrogenofor-
mans and Aminobacterium mobile (Stams & Hansen,
1984; Baena et al., 2000). Like strain TGOT, Amino-
bacterium mobile only grows on glutamate in the
presence of a hydrogen scavenger.

Strain TGOT is the first example of an organism that is
unable to form acetate from glutamate and forms
mainly propionate. As a consequence, the organism
has to grow in a syntrophic co-culture with a methano-
gen, since the free energy under standard conditions is
only slightly negative (Table 1). It is unclear why strain
TGOT does not form acetate from glutamate, even
though acetate production could be detected after
growth on several sugars, lactate and pyruvate. The
formation of traces of succinate during glutamate
utilization suggests that direct oxidation takes place
via α-ketoglutarate and succinyl-CoA. This path-
way was also suggested to be used in propionate
formation in Thermanaerovibrio acidaminovorans and
Acidaminobacter hydrogenoformans (Cheng et al.,
1992; Stams & Hansen, 1984).

Yeast extract (minimum 0±02%) was required for
growth. Pyruvate was converted by strain TGOT to
acetate, propionate, succinate (traces), H

#
and CO

#
.

Glycerol was utilized slowly by the pure culture but, in
co-culture, glycerol was converted rapidly to acetate,
traces of propionate and CH

%
.

Other substrates that could be used by the pure culture
of TGOT were lactate, arabinose, fructose, galactose,
glucose, maltose, mannitol, rhamnose and sucrose.
Sugars were converted mainly to acetate and pro-
pionate with the formation of traces of hydrogen and
formate.

In co-culture with the methanogen Methanobacterium
thermautotrophicum Z-245, strain TGOT could also
grow on Casamino acids, α-ketoglutarate and proline.
Proline (18±6 mM) was degraded to propionate (17±3
mM), NH+

%
(18±2 mM) and H

#
(27±2 mM) and the

amount of hydrogen formed was calculated from the
amount of methane measured. Anaerobic proline
oxidation has been reported for two other bacteria.
Desulfobacterium vacuolatum (Rees et al., 1998), a
versatile amino acid-utilizing sulphate reducer, and
Geovibrio ferrireducens (Caccavo et al., 1996), an iron-
reducing bacterium, can couple the oxidation of
proline to sulphate reduction and dissimilatory Fe(III)
reduction, respectively. The study of fermentative
proline utilization by anaerobes has focussed on its
use as an electron acceptor (McInerney, 1989). Strain
TGOT might be able to convert proline to glutamate
with the reverse reactions of proline synthesis via
glutamate semialdehyde.
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Fig. 4. Phylogenetic tree showing the po-
sition of strain TGOT among representatives
of thermophilic, anaerobic spore-forming
genera. The tree is based on a distance matrix
of 16S rRNA sequences and was constructed
using the neighbour-joining method cor-
rected by the method of Felsenstein (1982).
Bar, 0±1 (evolutionary distance).

No growth of strain TGOT was observed in pure
culture or in co-culture with Methanobacterium ther-
mautotrophicum Z-245 on aspartate, alanine, lysine,
threonine, leucine, tyrosine, glycine, fumarate, malate,
succinate, propionate, acetate, methanol, ethanol, pro-
panol, butanol, acetone, benzoate, starch or H

#
}CO

#
.

The following mixtures of amino acids were tested but
were not utilized by the pure culture of strain TGOT :
alanineglycine, alaninearginine, alanineproline,
leucineglycine, leucinearginine, leucineproline,
H

#
glycine, H

#
arginine and H

#
proline. The

strain could not grow in the presence of traces of
oxygen, nor could sulphate, sulphite, thiosulphate or
nitrate serve as electron acceptors.

Strain TGOT could grow on glucose between 37 and
60 °C with an optimum at 50–55 °C. The pH range for
growth was 5±5–8, with optimum growth at pH 7.

Reconstitution of the original consortium from
axenic cultures of strain TGOT, strain TPO and
Methanobacterium thermautotrophicum Z-245

In order to investigate glutamate utilization as orig-
inally observed in the propionate-oxidizing enrichment
culture, we performed reconstitution experiments with
three axenic cultures : strain TGOT, strain TPO (the
syntrophic propionate-oxidizing organism) and Meth-
anobacterium thermautotrophicum Z-245. In the ori-
ginal enrichment culture, glutamate was degraded to
acetate, CH

%
, NH+

%
and CO

#
, with the intermediate

production of propionate (Fig. 2a). The stoichiometry
of glutamate conversion was:

Glutamate−3"

%
H

#
OU acetate−1"

%
CH

%
1$

%
HCO−

$

$

%
H+NH+

%

In the reconstitution experiments, glutamate was
consumed according to the stoichiometry described
above (Fig. 2b). This indicated that the axenic cultures
of strain TGOT and strain TPO had the same physio-
logical capabilities as in the original enrichment
cultures.

Phylogeny

The nucleotide sequence (1725 bp) of the 16S rDNA of
strain TGOT was analysed and it revealed that this
organism belongs to the subphylum of Gram-positive,
endospore-forming, thermophilic, anaerobic bacteria.
Sequence alignment revealed that strain TGOT had
additional loops in the V1, V7 and V9 helices of the
16S rDNA. There are examples of other organisms
with 16S rDNA that exceeds the mean length of
1500 bp. In thermophiles, it is not unusual that the 16S
rDNA is longer (Rainey et al., 1996). Dot-blot hybrid-
izations with specific oligonucleotides against these
regions showed no hybridization with 16S rRNA from
strain TGOT, Moorella glycerini, Moorella thermo-
acetica and Escherichia coli. The positive control with
primer 538r reacted with all 16S rRNA molecules. This
indicated that the loops were not transcribed from the
16S rDNA to the 16S rRNA of strain TGOT. Com-
parison of the size of the 16S rDNA and 16S rRNA
showed that the sizes were respectively 1700 and
1500 bp. This confirms the absence of the loops in the
16S rRNA observed with the dot-blot hybridizations
(Fig. 3). It is unclear how the transcription of the
rRNA is regulated.

Sequence analysis showed that strain TGOT is only
distantly related to Moorella glycerini and Moorella
thermoacetica (Slobodkin et al., 1997; Collins et al.,
1994), with respective levels of similarity of 92 and
90%. The similarities were calculated with the use of
the 16S rDNA sequence of strain TGOT without the
additional loops. A phylogenetic tree showing the
relationship of strain TGOT and other related species
is depicted in Fig. 4.

The GC content of strain TGOT was 33±8 mol%.

Taxonomy

Our findings indicate that strain TGOT differs physio-
logically and phylogenetically from previously de-
scribed species. Strain TGOT is phylogenetically most
similar to the genus Moorella (90–92% similarity), but
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the phylogenetic relationship is not sufficiently close to
classify strain TGOT in this genus. Also, the ability of
strain TGOT to form solely propionate from glutamate
separates it from members of this genus. Therefore, we
propose a novel genus and species, Gelria glutamica
gen. nov., sp. nov.

Description of Gelria gen. nov.

Gelria (Gel.ri«a. N.L. fem. n. Gelria Gelre or Gelder-
land, one of the 12 provinces of The Netherlands, in
which Wageningen is located).

Non-motile, Gram-positive rods. Formation of ter-
minal spores. Strictly anaerobic. Moderately thermo-
philic. Saccharolytic growth in pure culture. Hydrogen
formed can be transferred to methanogenic partner.
Habitat : methanogenic granular sludge. Type species :
Gelria glutamica.

Description of Gelria glutamica sp. nov.

Gelria glutamica (glu.ta«mi.ca. N.L. n. acidum glutami-
cum glutamic acid; N.L. fem. adj. glutamica referring
to glutamic acid, on which the bacterium grows).

Cells are 0±5¬0±5–6 µm, varying depending on the
growth substrate. In pure culture, the cells can grow on
pyruvate, lactate, glycerol, glucose, rhamnose and
galactose. In syntrophic association with a hydrogeno-
trophic methanogen, the organism can utilize gluta-
mate, α-ketoglutarate, proline, Casamino acids and a
variety of sugars. Glutamate and proline are oxidized
to propionate, H

#
, NH+

%
and CO

#
. Sugars are converted

to acetate, propionate, CO
#
and H

#
as main products.

Growth occurs between 37 and 60 °C with optimum
growth at 50–55 °C and at pH 5±5–8 (optimum pH 7).
The DNA GC content is 33±8 mol%.

The type strain is TGOT (¯DSM 14054T ¯ATCC
BAA-262T).
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