132 research outputs found

    Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines

    Get PDF
    Copyright @ 2012 International Society for Advancement of Cytometry. The article can be accessed from the links below.This article has been made available through the Brunel Open Access Publishing Fund.The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a 60Cobalt source. Thirty minutes following exposure we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24 hour period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17) we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types.This article is made available through the Brunel Open Access Publishing Fund

    The PARP-1 inhibitor Olaparib suppresses BRCA1 protein levels, increases apoptosis and causes radiation hypersensitivity in BRCA1<sup>+/-</sup> lymphoblastoid cells

    Get PDF
    The use of polyADPribose polymerase inhibitors in cancer treatment provides a unique opportunity to target DNA repair processes in cancer cells while leaving normal tissue intact. The PARP-1 enzyme repairs DNA single strand breaks (SSB). Therefore PARP-1 inhibition in BRCA1 negative cancers results in the formation of cytotoxic DNA double strand breaks (DSB) causing synthetic lethality. The use of PARP1 inhibitors is gaining momentum in the treatment of a variety of tumours with BRCA1 involvement including breast, ovarian, pancreatic and prostate cancer. Our previous work showed that the PARP-1 inhibitor Olaparib causes both hypersensitivity of BRCA1+/- cells following exposure to gamma radiation due to the persistence of DNA strand breaks in cells, measured by the DNA damage biomarker γ-H2AX. Therefore dual treatment of cancers with radiotherapy and PARP1 inhibition may lead to cases of increased normal tissue toxicity in cancer patients. In this study we exposed two normal lymphoblastoid cell lines and three heterozygous BRCA1 lymphoblastoid cell lines to the PARP-1 inhibitor Olaparib and gamma radiation and after measured BRCA1 protein expression and apoptosis levels following treatment. BRCA1 protein foci analysis was performed on cells exposed to 2 Gy radiation in the presence or absence of 5 μM Olaparib. Using immunofluorescence and imaging flow cytometry, foci were measured in untreated cells and at 0.5, 3, 5 and 24 hours post-irradiation. Exposing normal and BRCA1+/- cells to Olaparib followed by gamma radiation results in a dramatic change in BRCA1 protein foci expression, with a significant reduction in BRCA1 protein expression observed in the heterozygote cells, together with an increase in apoptosis levels in these cells. In conclusion, combining PARP1 inhibitors with radiotherapy in treating of BRCA1-related cancers has clinical relevance, however this study and our previous publications serve to highlight the potential problems of increased side effects in these scenario

    Nanostructured Pt(NH3)4Cl2/SiO2 for nanomedicine: catalytic degradation of DNA in cancer cells

    Get PDF
    In vivo suppression of glioblastoma multiforme (GBM) in Wistar rats using silica-shelled biocatalytic Pt(NH3)4Cl2 nanoparticles is reported. These nanoparticles were synthesized by a sol-gel technique and characterized by SEM and HRTEM imaging. We confirmed morphological uniformity (30 nm) and surface acidity of the nanoparticles, respectively, by TEM imaging and FTIR spectral analysis. Interestingly, treatment of Wistar rats intraperitoneally inoculated with C6 cells using the biocatalysts resulted in considerable tumor shrinkage. Efficiency of the biocatalyst to shrink a tumor is superior to that by the commercial cytotoxic agent cisplatin. The tumor suppression property of Pt(NH3)4Cl2 nanoparticles is attributed to catalytic damage of DNA in C6 cells

    Epidermal growth factor mediates spermatogonial proliferation in newt testis

    Get PDF
    The complex processes of spermatogenesis are regulated by various factors. The aim of the current study is to determine the effect of epidermal growth factor (EGF) on spermatogonial proliferation and clarify the mechanism causing the proliferation in newt testis. In the organ culture, EGF stimulated spermatogonial proliferation, but not their differentiation into spermatocytes. cDNA cloning identified 3 members of the EGF receptors, ErbB1, ErbB2, and ErbB4, in the testis. RT-PCR showed that all the receptors cloned were expressed in both Sertoli and germ cells at the spermatogonial stage. In the organ cultures with inhibitors for the EGF receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K), the EGF-induced spermatogonial proliferation was suppressed. Furthermore, when the organ culture was exposed to EGF, the expressions of stem cell factor (SCF), immunoglobulin-like domain containing neuregulin1 (Ig-NRG1), and ErbB4 mRNA were increased. These results suggested that, since the spermatogonia are sequestered within cysts by the blood-testis barrier consisted of Sertoli cells, EGF possibly mediates spermatogonial proliferation in an endocrine manner through the receptors including ErbB1, ErbB2, and ErbB4 expressed on Sertoli cells via activation of MAPK cascade or/and PI3K cascade by elevating the expressions of SCF, Ig-NRG1, and ErbB4

    First-line treatment of malignant glioma with carmustine implants followed by concomitant radiochemotherapy: a multicenter experience

    Get PDF
    Randomized phase III trials have shown significant improvement of survival 1, 2, and 3 years after implantation of 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) wafers for patients with newly diagnosed malignant glioma. But these studies and subsequent non-phase III studies have also shown risks associated with local chemotherapy within the central nervous system. The introduction of concomitant radiochemotherapy with temozolomide (TMZ) has later demonstrated a survival benefit in a phase III trial and has become the current treatment standard for newly diagnosed malignant glioma patients. Lately, this has resulted in clinical protocols combining local chemotherapy with BCNU wafers and concomitant radiochemotherapy with TMZ although this may carry the risk of increased toxicity. We have compiled the treatment experience of seven neurosurgical centers using implantation of carmustine wafers at primary surgery followed by 6 weeks of radiation therapy (59–60 Gy) and 75 mg/m2/day TMZ in patients with newly diagnosed glioblastoma followed by TMZ monochemotherapy. We have retrospectively analyzed the postoperative clinical course, occurrence and severity of adverse events, progression-free interval, and overall survival in 44 patients with newly diagnosed glioblastoma multiforme. All patients received multimodal treatment including tumor resection, BCNU wafer implantation, and concomitant radiochemotherapy. Of 44 patients (mean age 59 ± 10.8 years) with glioblastoma who received Gliadel wafer at primary surgery, 28 patients (64%) had died, 16 patients (36%) were alive, and 15 patients showed no evidence of clinical or radiographic progression after a median follow-up of 15.6 months. At time of analysis of adverse events in this patient population, the median overall survival was 12.7 months and median progression-free survival was 7.0 months. Surgical, neurological, and medical adverse events were analyzed. Twenty-three patients (52%) experienced adverse events of any kind including complications that did not require treatment. Nineteen patients (43%) experienced grade 3 or grade 4 adverse events. Surgical complications included cerebral edema, healing abnormalities, cerebral spinal fluid leakage, meningitis, intracranial abscess, and hydrocephalus. Neurological adverse events included newly diagnosed seizures, alteration of mental status, and new neurological deficits. Medical complications were thromboembolic events (thrombosis, pulmonary embolism) and hematotoxicity. Combination of both treatment strategies, local chemotherapy with BCNU wafer and concomitant radiochemotherapy, appears attractive in aggressive multimodal treatment schedules and may utilize the sensitizing effect of TMZ and carmustine on MGMT and AGT on their respective drug resistance genes. Our data demonstrate that combination of local chemotherapy and concomitant radiochemotherapy carries a significant risk of toxicity that currently appears underestimated. Adverse events observed in this study appear similar to complication rates published in the phase III trials for BCNU wafer implantation followed by radiation therapy alone, but further add the toxicity of concomitant radiochemotherapy with systemic TMZ. Save use of a combined approach will require specific prevention strategies for multimodal treatments

    Neisseria gonorrhoeae Infection Induces Altered Amphiregulin Processing and Release

    Get PDF
    Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections

    Mating skew in Barbary macaque males: the role of female mating synchrony, female behavior, and male–male coalitions

    Get PDF
    A fundamental question of sexual selection theory concerns the causes and consequences of reproductive skew among males. The priority of access (PoA) model (Altmann, Ann NY Acad Sci 102:338–435, 1962) has been the most influential framework in primates living in permanent, mixed-sex groups, but to date it has only been tested with the appropriate data on female synchrony in a handful of species. In this paper, we used mating data from one large semi-free ranging group of Barbary macaques: (1) to provide the first test of the priority-of-access model in this species, using mating data from 11 sexually active females (including six females that were implanted with a hormonal contraceptive but who showed levels of sexual activity comparable to those of naturally cycling females) and (2) to determine the proximate mechanism(s) underlying male mating skew. Our results show that the fit of the observed distribution of matings with sexually attractive females to predictions of the PoA model was poor, with lower-ranking males mating more than expected. While our work confirms that female mating synchrony sets an upper limit to monopolization by high-ranking individuals, other factors are also important. Coalitionary activity was the main tactic used by males to lower mating skew in the study group. Coalitions were expressed in a strongly age-related fashion and allowed subordinate, post-prime males to increase their mating success by targeting more dominant, prime males. Conversely, females, while mating promiscuously with several males during a given mating cycle, were more likely to initiate their consortships with prime males, thus reducing the overall effectiveness of coalitions. We conclude that high-ranking Barbary macaque males have a limited ability to monopolize mating access, leading to a modest mating skew among them

    Medicinal and ethnoveterinary remedies of hunters in Trinidad

    Get PDF
    BACKGROUND: Ethnomedicines are used by hunters for themselves and their hunting dogs in Trinidad. Plants are used for snakebites, scorpion stings, for injuries and mange of dogs and to facilitate hunting success. RESULTS: Plants used include Piper hispidum, Pithecelobium unguis-cati, Bauhinia excisa, Bauhinia cumanensis, Cecropia peltata, Aframomum melegueta, Aristolochia rugosa, Aristolochia trilobata, Jatropha curcas, Jatropha gossypifolia, Nicotiana tabacum, Vernonia scorpioides, Petiveria alliacea, Renealmia alpinia, Justicia secunda, Phyllanthus urinaria,Phyllanthus niruri,Momordica charantia, Xiphidium caeruleum, Ottonia ovata, Lepianthes peltata, Capsicum frutescens, Costus scaber, Dendropanax arboreus, Siparuma guianensis, Syngonium podophyllum, Monstera dubia, Solanum species, Eclipta prostrata, Spiranthes acaulis, Croton gossypifolius, Barleria lupulina, Cola nitida, Acrocomia ierensis (tentative ID). CONCLUSION: Plant use is based on odour, and plant morphological characteristics and is embedded in a complex cultural context based on indigenous Amerindian beliefs. It is suggested that the medicinal plants exerted a physiological action on the hunter or his dog. Some of the plants mentioned contain chemicals that may explain the ethnomedicinal and ethnoveterinary use. For instance some of the plants influence the immune system or are effective against internal and external parasites. Plant baths may contribute to the health and well being of the hunting dogs
    corecore