12 research outputs found

    Convergence of the Generalized Volume Averaging Method on a Convection-Diffusion Problem: A Spectral Perspective

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Stress condensation in crushed elastic manifolds

    Full text link
    We discuss an M-dimensional phantom elastic manifold of linear size L crushed into a small sphere of radius R << L in N-dimensional space. We investigate the low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic methods and lattice simulations. When N \geq 2M the curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when N=M+1 and M>1, both energies appear to be condensed into a network of narrow M-1 dimensional ridges. The ridges appear straight over distances comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let

    Average Flow Model of Rough Surface Lubrication: Flow Factors for Sinusoidal Surfaces

    No full text
    The effects of lubricant film flow, pressurized and sheared between two parallel sinusoidal wavy surfaces in sliding motion is studied analytically. Results are presented using a flow factor model which provides an average description of the surfaces roughness impact. Two distinct cases are studied in order to compare stationary or time dependent local aperture configurations. Flow factors are computed respectively for each case through spatial or spatio-temporal average, revealing striking differences. The results shed light on the relevance of the composite roughness concept. Special attention is paid to the flow factor analytical behavior when surfaces are near contact

    On the Creation of Networks and Knowledge

    Get PDF
    This paper examines the evolution of networks when innovation takes place as a result of agents bringing together their knowledge endowments. Agents freely form pairs creating a globally stable matching. paired agents combine their existing knowledge to create new knowledge. We study the properties of the dynamic network formed by these interactions, and the resultant knowledge dynamics. Each agent carries an amount of knowl-edge of a certain type, and the innovative output of a pair is a function of the partners &apos; endowments and types. We nd evidence that the pattern of substitution between quantity and type of knowledge in the innovation function is vital in determining the growth of knowledge, the emergence of expertise and the stability of a number of network structures. Network structure itself exhibits a phase change when the relative importance of diversity compared to quantity increases beyond a threshold value

    New objective measurements of semen wave motion are associated with fertility in sheep

    Get PDF
    International audienceIn sheep, wave motion in semen is currently used by AI centres to select ejaculates for insemination. Despite its low cost, convenience and established ability to predict fertility, the subjectivity of this assessment is a limiting factor for its applicability. The aims of the present study were to establish an objective method for the analysis of wave motion and to assess the associations of objective parameters with fertility after cervical insemination. Collective sperm motion in undiluted semen was observed by phase contrast microscopy at low magnification in a 100-µm deep glass chamber. Images of moving dark waves over a grey background were recorded and analysed by the optic flow method, producing several velocity-related parameters. Turbulence was assessed from the motion of fluorescent polystyrene beads. Among objective parameters, optical flow entropy and the average speed of beads were both able to discriminate ejaculates suitable for insemination. Two synthetic variables of optic flow and bead motion and a global objective variable were computed from linear combinations of individual parameters and compared with the subjective motion score for their predictive value. These were as efficient as the wave motion score for assessing fertility and can be proposed for the assessment of ram semen in routine AI procedures
    corecore