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Abstract

By allowing the surface charge of one surface to affect the adsorption equilibrium of the other, we
establish the existence of a long-range attractive interaction between two identical surfaces in an
electrolyte containing polyvalent counter ions with a mean-field Poisson-Boltzmann approach. A Stern
electrostatic condition from linearization of the mass-action adsorption isotherm is used to capture how
polyvalent ion condensation affects and reverses the surface charge. We furthermore establish a direct
mapping between this Stern layer conditions and previously derived modified Mean-field formulations
associated with correlated fluctuations theory. For a sufficiently potential-sensitive isotherm, anti-
symmetric charge inversion can occur to produce an attractive force that increases with decreasing
ionic strengths. Analyses of a mass-action isotherm produce force-separation relations, including an
exponential far-field force decay distinct but consistent with previously proposed correlated fluctuation
theories, and in quantitative agreement with experimental data.

Keywords: Stern layer, correlated fluctuations theory, modified Mean-field theory,
Poisson-Boltzmann problem, attraction between identical surfaces

1. Introduction

Recent atomic force microscopy studies have
shown that, in the presence of a polyvalent counter-
ion, two similarly charged or identical surfaces can
develop an attractive force at a distance compa-
rable to the Debye screening length λ [1, 2]. This
observation is most likely related to earlier reports
on attraction between identical colloids in an elec-
trolyte, although the role of poly-valency is not as
well established for colloids [3, 4]. It is also related
to the condensation of likecharged molecules like
DNAs [5]. It has been rigorously shown that, for
two identical spheres with constant potential [6]
the inter-particle interaction is necessarily repul-
sive according to the classical Poisson-Boltzmann
(PB) mean-field theory [6]. For this reason, the-
ories for like-charge attraction phenomena have
sought mechanisms beyond the classical mean-

field description to include spatial correlation of
charge fluctuations [7, 8, 9, 10].

Such fluctuation theories suggest cross-surface
spatial correlation either between fluctuations of
the condensed counter-ions in the Stern layer [11]
or between surface Wigner crystalss [12] that are
formed by the same ions. However, when the two
surfaces are separated by a distance larger than
the Bjerrum length, thermal noise is expected to
disrupt the fluctuation correlation of condensed
ions on the two surfaces. Also strong concen-
tration gradients develop within the Debye layer
which may invalidate the assumptions of many
correlated fluctuation theories.

Although AFM measurements of [1] and re-
cent MD simulation of DNA condensation does
not show surface ion ordering [13], correlated fluc-
tuations should nevertheless play a role during ion
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condensation onto charged surfaces [14] especially
for polyvalent electrolytes counterions [2].

However, connecting the fluctuations at a Bjer-
rum length separation from the surface to longer
range attraction over the Debye length is still un-
clear. More specifically, theories for correlated
layers charges between two parallel plates sepa-
rated by a distance 2hmuch larger than the Debye
length λ, give rises to an effective “long-range”
dipolar attractive pressure, p ∼ 1/(2h)3 [15], an
almost dipolar one p ∼ ln[2h/λ]/(2h)3 [7, 9], or a
modified exponential attraction p ∼ exp−4h/λ /2h
[16, 17]–also found in colloids interactions [18]–
whereas the classical DLVO theory only predicts
a repulsive exponential behaviour p ∼ exp−2h/λ.

In this paper, we lump short-range correlated
fluctuation effects into a linear empirical isotherm
for polyvalent counter-ion condensation that cap-
tures charge inversion.

We then show that this linear Stern isotherm
condition can induce asymmetric charge inversion
and PB ion distributions due to nonlinear field
screening/enhancement of the space charge and
field-enhanced condensation effects on the two sur-
faces.

The paper is organized as follows. We describe
in section 2.1) the classical Stern-layer boundary
condition in its usual formulation. In section 3
we first discuss the linear Debye-Hückel (D-H)
approximation with Stern layers in order to find
the bifurcation points for the non-linear Poisson-
Boltzmann solutions which are further analyzed
analytically in 3.2. Section 4 is devoted to the
numerical computation of the main caracteristics
of these solutions such as the surface potential
and the interaction force with Stern layer param-
eters and dimensionless gap. Finally our findings
are compared with available experimental data in
section 6. We first show in 6.1 that adsorption
isotherm linearization leads to Stern layer bound-
ary conditions. We then compare long-range force
behaviour predicted by our theory with experi-
mantal measurements in section 6.

2. Modified Mean-field description

2.1. Stern layer boundary condition

Assuming rapid polyvalent counterion conden-
sation kinetics, the isotherm stipulates that the
surface charge density σ on a surface is a func-
tion of the Stern layer potential φ and the bulk
electrolyte concentrations.

The potential φ represents the electrical po-
tential difference between a bulk charge with a
zero reference potential and that of a condensed/
adsorbed polyvalent counterion on the surface in
the presence of an electric field. The condensed
state then represents a free energy minimum, where
the free energy includes the above electric poten-
tial, the entropy loss due to condensation and
the interaction potential among the counter-ions
and the surface. All three quantities are complex
functions of the condensed polyvalent counterion
condensation. As such, the free energy minimum
represents a complex isotherm relationship for the
equilibrium condensed counter-ion concentration
as a nonlinear function of the potential difference
and the bulk concentration. The surface charge
σ is then the sum of the orignal field-free surface
charge and those of the condensed counterions. A
typical calculation of the nonlinear isotherm for
the net charge density has been done by Zohar et

al. [1] and is shown in Section 6. It contains vari-
ous equilibrium association and dissociation con-
stants for the counterion condensation reaction—
the mutual interaction of the condensed counteri-
ons and the surface-counterion interaction . The
net surface charge σ vanishes at a particular iso-
electric potential φ0 where the field-induced con-
densation has reversed the surface charge.

At a given bulk electrolyte concentration, σ is
a nonlinear function of φ . One can, however, lin-
earize this expression at the isoelectric potential
φ0 to obtain a σ that is proportional to φ−φ0. Us-
ing a Gauss volume that confines the condensed
charges within the Stern layer and assuming there
is no field on the solid side, a simple integra-
tion of the Poisson equation indicates that this
net charge σ is proportional to the normal sur-
face electric field just outside the condensed ions
∂zφ. If we now assign this normal field outside the
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condensed Stern layer as the boundary conditon
for the Poisson equation beyond it, we obtain

∂zφ = ±K[φ− φ0], (1)

where the inverse Stern slip length K is deter-
mined by various association/dissociation equilib-
rium constants of participating ions and the iso-
electric potential φ0 represents the compensate
Zeta potential on the true surface due to poly-
valent ion condensation.

The Stern slip length can take on either sign,
depending on the charge of the polyvalent counte-
rion, the monovalent counterions, the uncompen-
sated surface and the complex interaction (chem-
istry) among them. In Stern’s classical context,
this boundary condition represents the field across
the Stern layer with the condensed counterion and
φ0 is the potential just outside the Stern layer.
The inverse Stern slip length K is then related to
the thickness of the condensed layer and the sur-
face density of the condensed counterions, with
different signs accounting for the charge of the
polyvalent counterion. Our analysis is for two pla-
nar surfaces although extension to spheres can be
carried out with the classical Derjaguin formula-
tion. We scale the normal coordinate z by h, the
half-separation between the two surfaces and the
potentials φ and φ0 by RT/ZF = kBT/Ze, the
thermal energy per valency measured in electric
potential, where R is the ideal gas constant, T
the temperature, Z the monovalent counterions
valency, F the Faraday constant, kB the Boltz-
mann constant, e the electron charge. From this
we obtain an expression identical to (1) but with
dimensionless variables

∂zφ(±1) = ±µ
√

β[φ(±1) − φ0], (2)

where we define the dimensionless separation squared
as β = (h/λ)2 , so that the dimensionless K in (1),
scaled by the separation h has been decomposed
in K = −µ

√
β such that µ is only a function of

the electrolyte composition. The magnitude of µ
measures the effect of the Stern layer potential
(and external field) on the adsorption isotherm.

With the same scaling, the PB equation for
symmetric electrolytes is

∂2
zφ = β sinhφ, (3)

which will be solved with (2) for z = ±1. We note
that, (2) and (3) are symmetric to the transforma-
tion µ → −µ and z → −z. Hence the sign of µ is
arbitrary and will be taken to be negative, so that
µ is a positive constant. For any value of φ0, sym-
metric solutions always exit, but anti-symmetric
solutions are only permitted for φ0 = 0.

In section 6.1 we derive the Stern layer pa-
rameters from the adsorption isotherm lineariza-
tion parameters, which are more easy to relate
to some given experimental condition. One can
also find in [19] the derivation of Stern layer pa-
rameters from previous derivation related to the
correlated fluctuation theory of Lau et al. [9, 10].

3. Solution to the PB problem with Stern

layers

In this section we solve the PB problem associ-
ated with boundary conditions (2). We first inves-
tigate the linear approximation associated with
the Debye-Hückel (D-H) approximation, and then
explore the features of the solution to the full non-
linear problem.

3.1. D-H approximation

Even though the linearized version of (3) does
not produce any interaction, we still use the linear
Debye-Hückel (D-H) approximation to determine
the bifurcation of non-trivial solutions. Two lin-
earized solutions exist, one symmetric (denoted
with a capital S) and one non-symmetric (denoted
with NS) with respect to reflection across mid-
plane,

φS = cosh(
√

βz), (4)

φNS =
e
√

βz

2
+ (

2µφ0
√

µ2 − 1
− 1)

e−
√

βz

2
. (5)

The coefficients of these eigenfunctions cannot be
specified for the homogenized versions of (2) and
(3). However, the corresponding linear operator
becomes singular at

βS
c =

(

ln

[

−µφ0 +
√

µ2φ2
0 + (1 − µ2)

(1 − µ)

])2

,(6)
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βNS
c =

(

1

2
ln
µ+ 1

µ− 1

)2

, (7)

where non-trivial solutions can bifurcate from the
trivial solution 0. We note that for non-symmetric
solutions (anti-symmetric in the case φ0 = 0),
only |µ| > 1 is possible, or, more precisely, µ > 1
since we are restricted to positive µ values.

3.2. Solution to Poisson-Boltzmann problem

Equation (3) is integrable and its first integral
is

1

2
(∂zφ)2 = β cosh φ+ d, (8)

where d is a constant which depends on µ, β, φ0

and the surface potential. Evaluating this integral
at z = ±1 as a reference point, one obtains

d
′

=
d

β
=

1

2
[µ(φ(±1)−φ0)]

2−coshφ(±1).(9)

This parameter can be related to the force be-
tween the two surfaces. Using Green’s theorem
and including the osmotic pressure from the bulk
solution at the infinities behind the two surfaces
[6], the pressure (force per unit area) between the
two surfaces is can be derived,

p =
(

− 1
2β

(∂zφ)2 + cosh φ− 1
)

p = −d′ − 1

p = − [µ(φ(1)−φ0)]2

2
+ coshφ(1) − 1

(10)

where the dimensionless pressure p has been nor-
malized by the Debye Maxwell stress ǫ(RT/zFλ)2

for convenience to remove the dependence on sep-
aration. It is independent of z and hence its value
at z = 1 is evaluated by using (9). Looking at
the last expression of (10) it is obvious that the
osmotic pressure difference in the second term is
always repulsive and the Maxwell pressure in the
first term is always attractive, leading apparently
to possible attractive or repulsive forces depend-
ing on φ(1) or d

′

. Nevertheless it can be easily
shown by evaluating the pressure at z = 0 for the
case of φ(0) = 0 associated with anti-symmetric
solution for φ0 = 0, in the first expression of
(10) that the only remaining term at the origin is

0 1 2
β

0

2

4

6

φ(
1)

µ=2
µ=3
µ=4

Figure 1: Surface potential of asymmetric solution φ(1) at
z = 1 versus dimensionless gap β for φ0 = 0. The dotted
lines display the value φ∞(1) obtained from solving (16).

the attractive Maxwell pressure. Hence all anti-
symmetric solutions near the isoelectric point are
attractive. Furthermore, some observations can
be made at the (D-H) limit of small φ(1). Ex-
pansion of the osmotic pressure term shows that
attractive interaction is only possible for µ > 1,
which is consistent with the previous observation
that anti-symmetric solutions are only possible for
this parameter range.

The required solution can be simplified by the
Boltzmann transformation

ψ = exp−φ

2 , (11)

such that the first integral (8) is transformed to

∂zψ = ±
√

β
2

√

ψ4 + 2 d
β
ψ2 + 1

∂zψ = ±
√

β
2

√

(ψ2 − α−)(ψ2 − α+),
(12)

where,

α± = −d′ ±
√

d′2 − 1, (13)

are complex conjugate roots. Integrating (12) one
more time leads to

±
√
βz

2
+ c = −√

α−F1 (ψ
√
α+, α−) , (14)
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where F1 is the elliptic integral of the first kind.
Evaluating (14) at z = ±1 gives a transcendental
equation for the potential values at boundaries:

√
β = −√

α−
[

F1

(

ψ(1)
√
α+, α−

)

−F1

(

ψ(−1)
√
α+, α−

)

,
(15)

which complements Eq.(9), (11) and Eq.(13) to
produce a set of two transcendental equations for
φ(±1) that can only be solved numerically.

4. Numerical computation and results

Albeit α± is complex, and thus elliptic inte-
gral of the first kind with complex variables are
needed for this computation, the solutions are al-
ways real and are symmetric with respect to α±.
We use a Newton–Picard method for the evalua-
tion of the unknown surface field φ(1), and con-
tinuously vary the parameters β and µ with a
continuation method. The pitchfork bifurcation
of these antisymmetric solutions from the bifur-
cation point βNS

c (µ) of (7) is shown in Fig. 1 for
different values of µ. It is evident that φ(1) first
rises beyond a critical dimensionless separation
βNS

c and very rapidly reaches a constant asymp-
totic value φ∞(µ) which depends only on µ at
large separations, i.e for large value of β. This
asymptotic value is concomitantly reached when
d

′

tends to −1, and α± to 1 so that the arguments
of the elliptic function in (14) reaches 1 where it
display a unique logarithmic singularity to com-
pensate for large value of β on the left-hand-side.
In this limit, one can evaluate the potential φ∞(µ)
from solving the simple transcendental equation

[µ(φ∞ − φ0)]
2 = 2(coshφ∞ − 1) (16)

found from (9). This values is illustrated for φ0 =
0 in Fig. 1.

Other computations in the φ0 − µ plane can
also be found in [19].

5. Attractive behaviour

From knowing the surface potential one can
easily deduce from (10) the negative pressure as-
sociated with iso-electric point anti-symmetric so-
lutions. This negative pressure is plotted in Fig.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
β

10
−2

10
−1

10
0

10
1

10
2

−
p

µ=2
µ=3
µ=4

Figure 2: Semi-logarithmic plot of the attractive force per
unit surface p versus the square of the dimensionless half-
gap β for different values of parameter µ and φ0 = 0.

2a. The sharp maximum of the pressure in Fig.
2 is at the same value of βm for which the po-
tential gradient at the origin reaches a maximum
(which is obvious from examining the first rela-
tion (10)). It is interesting to observe that the
maximum force depends exponentially on the µ
parameter. It might be a very sensitive way of
estimating the parameter µ. When moving fur-
ther apart from the iso-electric point, one find
that the attractive region exists only for a finite
range of separation β which are larger than βNS

c ,
as illustrated in Fig. 2b. Repulsion due to native
charges responsible for the effective Zeta potential
φ0 reduces the attractive region until it disappears
completely beyond a critical φ0. The repulsion
also gives rise to a shallow maximum, a threshold
pressure, as seen in Fig. 2b.

As previously discussed, the large gap limit is
interesting to consider and compare to the usual
(D-H) limit for the force. In this limit, the param-
eter d

′

approaches value −1, which corresponds to
the vicinity of the logarithmic singularity of the
elliptic function. Using known asymptotic behav-
ior of the elliptic function near this singularity, it
is possible to evaluate analytically the force dis-
tribution using, (9), (10) and (14)

for β ≫ 1 p ∼ − exp−2
√

β ∼ − exp−2 h

λ (17)
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We compare this asymptotic behavior against the
numerical results in the inset of Fig. (2)a and
show very good agreement for β values as small
as 3. It is interesting to note that the slope of the
curves is independent of µ, as predicted by (17).

6. Comparison with experiments

6.1. Derivation of Stern layer parameters from

adsorption isotherm linearization

In this section we use the “classical” deriva-
tion for Stern layer parameters from adsorption
isotherm linearization. We evaluate the µ and
φ0 parameters from the isotherm proposed in Zo-
har et al. [1] for the net surface charge density σ
at different trivalent Cobalt hexamine concentra-
tions. The isotherm is derived from simple mass-
action kinetics whose parameters are either mea-
sured or estimated with simple arguments, shown
to be inconsistent with phase-locked Wigner crys-
tals

σ(φ) = −nSie
1 −K1[Co] exp−3φ

1 +K2[Co] exp−3φ
(18)

Where e is the electron charge, [Co] the Cobalt
hexamine concentration, φ the dimensionless po-
tential rescaled by RT/ZF , K1 = 104M−1 and
K2 = 5 103M−1 are two empirical constants re-
lated to the association and dissociation rates and
nSi is the density of ionizable silanol groups which
is estimated to range between nSi ≃ 0.3-1 nm−2.
The surface electro-neutral condition σ(φ0) = 0
leads to a simple dependence between the com-
pensated Zeta potential φ0 at a particular coun-
terion concentration

φ0 =
ln (K1[Co])

3
, (19)

A first order Taylor expansion of (18) about this
reference point leads to

σ(φ) ≃ −2nSie(φ− φ0) (20)

The application of Gauss theorem at the surface
location z = 1, for dimensionless potential rescaled
by RT/ZF = kBT/Ze leads to

∂zφ = −2
Ze

kBT

nSieh

ǫ
(φ− φ0) (21)

From identifying the constant of this affine rela-
tion to the Stern condition (2) with K = −µh/λ
one finds

µ = 2ZℓBλnSi (22)

where, again, ℓB ≡ e2/ǫkBT is the Bjerrum length.
It is then interesting to compare (22) with the pre-
vious expression derived from the theoretical two-
fluid model of Lau et al. in [19]. The condensed
ion density nC in the theoretical derivation of con-
stant µ proposed in [19] is replaced by the den-
sity of ionizable silanol groups nSi in its empirical
counterpart given in (22). Since they both repre-
sent the surface density of negative charges at the
solid surface, this give a consistent picture of how
the parameter µ is related to physical constants.
Moreover, since nC is a theoretical prediction of
the surface charge density (which could be related
to other physical parameters from charge conden-
sation mecanism as explained in [20]) where nSi

is related to an experimental estimate of the same
quantity, both expression are fully consistent with
either a theoretically or experimentally derivated
expression for µ. Finally, it is hence surprising
that such different approaches for estimating pa-
rameter µ only quantitatively differ by a prefac-
tor which is 2Z in one case and πZ2 in the other
case. The different dependence with the valency
Z could be attributed to the fact that in the ex-
perimental case, the negative charges associated
with silanol groups are generally considered as
monovalent.

The range of possible experimental value for
nSi, leads to µ = 1.32-4.4. Furthermore relation
(19) produces negative values of φ0 for these ex-
perimental condition. However, as the problem
is invariant with the transformation (z, φ, φ0) →
(−z,−φ,−φ0), our results obtained for positive
φ0 also applies for negative ones.

6.2. Comparison with experimental force

The configuration which is analyzed in this pa-
per is associated with two parallel identical sur-
faces. Nevertheless, the available experimental
fine measurements of the force between similar
surfaces in an electrolyte have all been performed
with Atomic Force Microscopy (AFM) [4, 2, 1].
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Figure 3: Test of the long-range scaling (17) for the data
collected from Fig. 1b of [2] associated with different con-
centrations of LaCl3 salt with an adjusted equivalent half-
mean separation 〈h〉. The experimental Debye-length val-
ues λ are those given in [2].

Those measures are associated with a sphere/plane
configurations. Nevertheless some features of the
predicted attraction force between two parallel
planes can be possibly extended when the ratio
between the AFM tip distance to the wall to its
radius of curvature is small [17, 4, 19].

As mentionned earlier in section 1, different
theoretical predictions have been proposed for the
long-range behaviour of the possibly attractive
force of an electrolyte confined between two iden-
tical walls distant by a half-gap h. Neverthe-
less, few of these predictions have been sucessfully
compared with experiments but the modified ex-
ponential attraction

p ∼ exp−4h/λ

2h
(23)

has been proposed in [16, 17] and experimentally
tested in [4].

Nevertheless, there might be some caution for
a definite answer to this question since the pro-
posed modifyed exponential behavior very slightly
differ from a pure exponential behaviour more re-
cently reported in [1, 2]. Nevertheless, to our
knowledge, the possibility of non exponential, al-
gebraic far field decay proposed in [15, 7, 9] has

never received any convincing experimental evi-
dence. Futhermore, since most of the experimen-
tal evidence for a modified exponential attraction
is tested on semi-logarithmic coordinates in [4],
and given the fact that experimental observation
are also relatively noisy, it is hard to draw a def-
inite conclusion on a possible logarithmic correc-
tions to a mere linear trend of ln p versus h in
(23). Moreover, most of the correction to the lin-
ear behaviour in figure 2 of [4] is concentrated in
the close region where it is higly possible that the
far-field asymptotic regime break-down.

On the contrary, our exponential decay of long-
range attraction (17) is consistent with various ex-
perimental observations [1, 2]. To the best of our
knowledge, our approach is the only one which
predicts a pure exponential asymptote for the at-
tractive force found in [2]. We verify this state-
ment by analysing the slope of the exponential
decay of the experimental measurements of [2].

Using the equivalent gap 〈h〉 deduced from
the observed hm associated with LaCl3 salt an-
alyzed in [2], we plot in figure 3 the experimen-
tal pressure as well as our theoretical prediction
p ∼ exp−2〈h〉/λ. The resulting slope in log-linear
scale very satisfactorily compared with our theo-
retical prediction as previously stated in relation
(1) of Besteman et al.’s paper [2] independently
of parameter µ. Hence not only our prediction
quantitatively agree with a pure exponential de-
cay, but the obserbed slope in semi-logarithmic
representation also leads to satisfactory compari-
son with experimental data.

7. Conclusion

We have shown that it is possible to obtain
an attractive anti-symmetric solution for the po-
tential distribution of an electrolyte between two
identical surfaces by taking into account the cou-
pling between surface charge across the double
layer due to the effect of each field on the con-
densation of polyvalent counterions on the other,
as captured by a simple linear Stern condition
derived from common isotherms obeying mass-
action kinetics. We show analytically that asym-
metric charge inversion and attraction are pos-
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sible and we produce numerical results that are
qualitatively and quantitatively consistent with
experimental data. Our results reconcile corre-
lated fluctuation theory based attraction, Stern
layer models and available experimental observa-
tions. We are grateful for inputs from Y.E. Zhu,
X. Cheng, C. Beaume and S. Basuray, and fruitful
discussions with Pr. E. Trizac.
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