143 research outputs found

    Statistical analysis of the total magnetic flux decay rate in solar active regions

    Full text link
    We used line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory to derive the decay rate of total unsigned magnetic flux for 910 ephemeral and active regions (ARs) observed between 2010 and 2017. We found that: i) most of the ARs obey the power law dependence between the peak magnetic flux and the magnetic flux decay rate, DRDR, so that DRΦ0.70DR\sim \Phi^{0.70}; ii) larger ARs lose smaller fraction of their magnetic flux per unit of time than the smaller ARs; iii) there exists a cluster of ARs exhibiting significantly lower decay rate than it would follow from the power law and all of them are unipolar sunspots with total fluxes in the narrow range of (28)×1021(2 - 8) \times 10^{21} Mx; iv) a comparison with our previous results shows that the emergence rate is always higher than the decay rate. The emergence rate follows a power law with a shallower slope than the slope of the decay-rate power law. The results allowed us to suggest that not only the maximum total magnetic flux determines the character of the decaying regime of the AR, some of the ARs end up as a slowly decaying unipolar sunspot; there should be certain physical mechanisms to stabilize such a sunspot

    Parametric study of the kinematic evolution of coronal mass ejection shock waves and their relation to flaring activity

    Full text link
    Coronal and interplanetary shock waves produced by coronal mass ejections (CMEs) are major drivers of space-weather phenomena, inducing major changes in the heliospheric radiation environment and directly perturbing the near-Earth environment, including its magnetosphere. A better understanding of how these shock waves evolve from the corona to the interplanetary medium can therefore contribute to improving nowcasting and forecasting of space weather. Early warnings from these shock waves can come from radio measurements as well as coronagraphic observations that can be exploited to characterise the dynamical evolution of these structures. Our aim is to analyse the geometrical and kinematic properties of 32 CME shock waves derived from multi-point white-light and ultraviolet imagery taken by the Solar Dynamics Observatory (SDO), Solar and Heliospheric Observatory (SoHO), and Solar-Terrestrial Relations Observatory (STEREO) to improve our understanding of how shock waves evolve in 3D during the eruption of a CME. We use our catalogue to search for relations between the shock wave's kinematic properties and the flaring activity associated with the underlying genesis of the CME piston. Past studies have shown that shock waves observed from multiple vantage points can be aptly reproduced geometrically by simple ellipsoids. The catalogue of reconstructed shock waves provides the time-dependent evolution of these ellipsoidal parameters. From these parameters, we deduced the lateral and radial expansion speeds of the shocks evolving over time. We compared these kinematic properties with those obtained from a single viewpoint by SoHO in order to evaluate projection effects. Finally, we examined the relationships between the shock wave and the associated flare when the latter was observed on the disc by considering the measurements of soft and hard X-rays.Comment: 11 pages, 12 figures, accepted for publication in A&

    Biochemical Profiling of Histone Binding Selectivity of the Yeast Bromodomain Family

    Get PDF
    Background: It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes. Methodology: The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity. Conclusions: Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone

    УПРАВЛЕНИЕ ПЕРЕВОЗКАМИ ЗАПАСНЫХ ЧАСТЕЙ ТРАНСПОРТНЫХ СРЕДСТВ

    Get PDF
    The paper discusses the problem associated with the supply of spare parts of vehicles. Its solution is based on a simulation approach. The results of the simulation are presented. В статье рассматривается задача, связанная с поставками запасных частей транспортных средств. Решение ее базируется на имитационном подходе. Приведены результаты проведенного моделирования.

    New records of Holocene polar bear and walrus (Carnivora) in the Russian Arctic

    Get PDF
    This article discusses recent finds of Holocene polar bear and walrus from the northern regions of Russia. The ulna of a polar bear was found on Vaygach Island and radiocarbon dated to 1,971 +/- 25 BP (OxA-23631). This calibrates to 430-540 AD, taking into account the marine reservoir effect. The size of the bone is similar to that of a recent Ursus maritimus. The locality of the fossil bone is within the modern species range, which developed about two millennia ago. In 2014 a walrus tusk was found on the coast of New Siberia Island and is radiocarbon dated to 5,065 +/- 35 BP (GrA-62452). This calibrates to 3,510-3,370 BC, taking into account the marine reservoir effect. Its size and morphology are identical to that of an adult male of the subspecies Odobenus rosmarus laptevi. This subspecies populates the eastern parts of the Kara Sea, the entire Laptev Sea and the western parts of the East Siberian Sea. This new discovery could mean that populations of O. rosmarus laptevi inhabited the waters near the New Siberian Islands during the Middle Holocene, and that the present-day coastline of the Siberian Arctic Islands was already formed at that time

    On the Origin of Hard X-Ray Emissions from the Behind-the-limb Flare on 2014 September 1

    Get PDF
    The origin of hard X-rays and gamma-rays emitted from the solar atmosphere during occulted solar flares is still debated. The hard X-ray emissions could come from flaring loop tops rising above the limb or coronal mass ejection shock waves, two by-products of energetic solar storms. For the shock scenario to work, accelerated particles must be released on magnetic field lines rooted on the visible disk and precipitate. We present a new Monte Carlo code that computes particle acceleration at shocks propagating along large coronal magnetic loops. A first implementation of the model is carried out for the 2014 September 1 event, and the modeled electron spectra are compared with those inferred from Fermi Gamma-ray Burst Monitor (GBM) measurements. When particle diffusion processes are invoked, our model can reproduce the hard electron spectra measured by GBM nearly 10 minutes after the estimated on-disk hard X-rays appear to have ceased from the flare site

    Structural and Chemical Profiling of the Human Cytosolic Sulfotransferases

    Get PDF
    The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique “chemical fingerprints” for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural “priming” of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone
    corecore