19 research outputs found

    East European chironomid-based calibration model for past summer temperature reconstructions

    Get PDF
    Understanding local patterns and large-scale processes in past climate necessitates a detailed network of temperature reconstructions. In this study, a merged temperature inference model using fossil chironomid (Diptera: Chironomidae) datasets from Finland and Poland was constructed to fill the lack of an applicable training set for East European sites. The developed weighted averaging partial least squares (WA-PLS) inference model showed favorable performance statistics, suggesting that the model can be useful for downcore reconstructions. The combined calibration model includes 212 sites, 142 taxa, and a temperature gradient of 11.3-20.1 degrees C. The 2-component WA-PLS model has a cross-validated coefficient of determination of 0.88 and a root mean squared prediction error of 0.88 degrees C. We tested the new East European temperature transfer function in chironomid stratigraphies from a Finnish high-resolution short-core sediment record and a Polish paleolake (Zabieniec) covering the past similar to 20 000 yr. In the Finnish site, the chironomid-inferred temperatures correlated closely with the observed instrumental temperatures, showing improved accuracy compared to estimates by the original Finnish calibration model. In addition, the long-core reconstruction from the Polish site showed logical results in its general trends compared to existing knowledge on the past regional climate trends; however, it had distinct differences when compared with hemispheric climate oscillations. Hence, based on these findings, the new temperature model will enable more detailed examination of long-term temperature variability in Eastern Europe, and consequently, reliable identification of local and regional climate variability of the past.Peer reviewe

    Air temperature and water level inferences from northeastern Lapland (69 degrees N) since the Little Ice Age

    Get PDF
    Independent Arctic records of temperature and precipitation from the same proxy archives are rare. Nevertheless, they are important for providing detailed information on long-term climate changes and temperature-precipitation relationships in the context of large-scale atmospheric dynamics. Here, we used chironomid and cladoceran fossil assemblages to reconstruct summer air-temperature and water-level changes, during the past 400 years, in a small lake located in Finnish Lapland. Temperatures remained persistently cold over the Little Ice Age (LIA), but increased in the 20th century. After a cooler phase in the 1970s, the climate rapidly warmed to the record-high temperatures of the most recent decades. The lake-level reconstruction suggested persistently wet conditions for the LIA, followed by a dry period between similar to 1910 and 1970 CE, when the lake apparently became almost dry. Since the 1980s, the lake level has returned to a similar position as during the IAA. The temperature development was consistent with earlier records, but a significant local feature was found in the lake-level reconstruction the LIA appears to have been continuously wet, without the generally depicted dry phase during the 18th and 19th centuries. Therefore, the results suggest local precipitation patterns and enforce the concept of spatially divergent LIA conditions.Peer reviewe

    New insights into lake responses to rapid climate change : the Younger Dryas in Lake Goscia(z) over dot, central Poland

    Get PDF
    The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.Peer reviewe

    Changes in habitat conditions in a Late Glacial fluviogenic lake in response to climatic fluctuations (Warta River valley, central Poland)

    Get PDF
    The Warta River val ley was greatly in flu enced by the ice sheet of the Last Gla cial Max i mum (LGM). A small peatland lo cated in the Warta drain age sys tem is here used as a palaeoarchive of cli ma tic and hab i tat changes dur ing the Late Gla cial (Weichselian). The ugi pound sed i ment pro file was in ves ti gated us ing multi-proxy (pol len, Chironomidae, Cladocera and geo chem is try) anal y ses that re corded changes in a fluviogenic sed i men tary de pres sion. Af ter the Poznan Phase (LGM), ugi pound func tioned as an ox bow lake that was cut off from the ac tive river chan nel as a re sult of flu vial ero sion. Since that time, the Warta River has flowed only along the sec tion now oc cu pied by the Jeziorsko Res er voir. Sed i men ta tion of lac us trine de pos its started at the be gin ning of the Late Gla cial. Sum mer tem per a ture re con struc tions in di cate cool Old est and Youn ger Dryas, but no clear cool ing in the Older Dryas. Dur ing the Youn ger Dryas the palaeolake was com pletely oc cu pied by a peatland (fen), which pe ri od i cally dried out dur ing the Ho lo cene. In ves ti ga tion of this site has tracked the re ac tion of the hab i tat to cli ma tic, hy dro log i cal and geomorphological changes through out the Late Weichselian.Peer reviewe

    EOSC-SYNERGY EU Deliverable D6.3: Final report about skills development support activities and related services

    No full text
    This report summarises the methodology work done in task T6.2 of EOSC-Synergy focused on skills development and the “train the trainer” approach, as well as the university collaboration outcomes of task T6.3. This deliverable is complementary to the D6.2 that focussed on the Learn@Synergy platform release and also presents the evolution of the services provided in task T6.1 that has resulted as an outcome of user feedback.EOSC-SYNERGY receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857647.Peer reviewe

    Measurement of the production and elliptic flow of (anti)nuclei in Xe–Xe collisions at √sNN = 5.44 TeV

    No full text
    Measurements of (anti)deuteron and (anti)3He production in the rapidity range |y|< 0.5 as a function of the transverse momentum and event multiplicity in Xe−Xe collisions at a center-of-mass energy per nucleon−nucleon pair of sNN−−−√ = 5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model (SHM) and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe−Xe collisions and shows features similar to those already observed in Pb−Pb collisions, i.e., the mass ordering at low transverse momentum and the meson−baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe−Xe collisions. The extracted chemical freeze-out temperature Tchem = (154.2 ± 1.1) MeV in Xe−Xe collisions is similar to that observed in Pb−Pb collisions and close to the crossover temperature predicted by lattice QCD calculations

    Charm fragmentation fractions and cc{\rm c\overline{c}} cross section in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    The total charm-quark production cross section per unit of rapidity dσ(cc)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(chc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc)/dy=219.6±6.3  (stat.)  11.8+10.5  (syst.)  2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0) \mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with e+e\mathrm{e^{+}e^{-}} and ep\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc)=0.91±0.04  (stat.)0.09+0.08  (syst.)0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.The total charm-quark production cross section per unit of rapidity dσ(cc)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(chc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc)/dy=219.6±6.3  (stat.)  11.8+10.5  (syst.)  2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0)\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p-Pb collisions compared with e+e\mathrm{e^{+}e^{-}} and ep\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc)=0.91±0.04  (stat.)0.09+0.08  (syst.)0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

    Investigating strangeness enhancement in jet and medium via ϕ\phi(1020) production in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (ϕ(1020)\phi(1020) meson). Measuring hϕ-\phi correlations at midrapidity in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the hϕ-\phi correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between hϕ-\phi and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ/h\phi/\mathrm{h} ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ(1020)\phi(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event.This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (ϕ(1020)\phi(1020) meson). Measuring hϕ-\phi correlations at midrapidity in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the hϕ-\phi correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between hϕ-\phi and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ/h\phi/\mathrm{h} ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ(1020)\phi(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event

    Measurement of 3ΛH production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    he first measurement of 3ΛH and 3Λ¯¯¯¯H¯¯¯¯ differential production with respect to transverse momentum and centrality in Pb−Pb collisions at sNN−−−√=5.02~TeV is presented. The 3ΛH has been reconstructed via its two-charged-body decay channel, i.e., 3ΛH→3He+π−. A Blast-Wave model fit of the pT-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the 3ΛH kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of 3ΛH and 3He is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Investigating strangeness enhancement in jet and medium via φ(1020) production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (φ(1020) meson). Measuring h–φ correlations at midrapidity in p–Pb collisions at √sNN = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h–φ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h–φ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the φ/h ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total φ(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying even
    corecore