76 research outputs found
Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements
We report the realization of quantum microwave circuits using hybrid
superconductor-semiconductor Josephson elements comprised of InAs nanowires
contacted by NbTiN. Capacitively-shunted single elements behave as transmon
qubits with electrically tunable transition frequencies. Two-element circuits
also exhibit transmon-like behavior near zero applied flux, but behave as flux
qubits at half the flux quantum, where non-sinusoidal current-phase relations
in the elements produce a double-well Josephson potential. These hybrid
Josephson elements are promising for applications requiring microwave
superconducting circuits operating in magnetic field.Comment: Main text: 4 pages, 4 figures; Supplement: 10 pages, 8 figures, 1
tabl
Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires
Double quantum dot in the few-electron regime is achieved using local gating
in an InSb nanowire. The spectrum of two-electron eigenstates is investigated
using electric dipole spin resonance. Singlet-triplet level repulsion caused by
spin-orbit interaction is observed. The size and the anisotropy of
singlet-triplet repulsion are used to determine the magnitude and the
orientation of the spin-orbit effective field in an InSb nanowire double dot.
The obtained results are confirmed using spin blockade leakage current
anisotropy and transport spectroscopy of individual quantum dots.Comment: 5 pages, supplementary material available at
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.16680
Electrical control over single hole spins in nanowire quantum dots
Single electron spins in semiconductor quantum dots (QDs) are a versatile
platform for quantum information processing, however controlling decoherence
remains a considerable challenge. Recently, hole spins have emerged as a
promising alternative. Holes in III-V semiconductors have unique properties,
such as strong spin-orbit interaction and weak coupling to nuclear spins, and
therefore have potential for enhanced spin control and longer coherence times.
Weaker hyperfine interaction has already been reported in self-assembled
quantum dots using quantum optics techniques. However, challenging fabrication
has so far kept the promise of hole-spin-based electronic devices out of reach
in conventional III-V heterostructures. Here, we report gate-tuneable hole
quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli
spin blockade and electrical control of single hole spins. The devices are
fully tuneable between hole and electron QDs, enabling direct comparison
between the hyperfine interaction strengths, g-factors and spin blockade
anisotropies in the two regimes
Effect of the GaAsP shell on optical properties of self-catalyzed GaAs nanowires grown on silicon
We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on
Si substrates using molecular-beam epitaxy. Transmission electron microscopy
(TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows
domination of the zinc-blende phase. This is further confirmed in optics of
single NWs, studied using cw and time-resolved photoluminescence (PL). A
detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP
capping in suppressing the non-radiative surface states: significant PL
enhancement in the core-shell structures exceeding 2000 times at 10K is
observed; in uncapped NWs PL is quenched at 60K whereas single core-shell
GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis
of the PL temperature dependence in both types of NW we are able to determine
the main carrier escape mechanisms leading to the PL quench
Electrical control of single hole spins in nanowire quantum dots
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III–V semiconductors have unique properties, such as a strong spin–orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole–spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes
Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.
The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn402208p. Gamalski AD, Perea DE, Yoo J, Li N, Olszta MJ, Colby R, Schreiber DK, Ducati C, Picraux ST, Hofmann S, ACS Nano 2013, 7 (9), 7689–7697, doi:10.1021/nn402208
- …