1,201 research outputs found
Effects of Cutoff Functions of Tersoff Potentials on Molecular Dynamics Simulations of Thermal Transport
Past molecular dynamics studies of thermal transport have predominantly used
Stillinger-Weber potentials. As materials continuously shrink, their properties
increasingly depend on defect and surface effects. Unfortunately,
Stillinger-Weber potentials are best used for diamond-cubic-like bulk crystals.
They cannot represent the energies of many metastable phases, nor can they
accurately predict the energetics of defective and surface regions. To study
nanostructured materials, where these regions can dominate thermal transport,
the accuracy of Tersoff potentials in representing these structures is more
desirable. Based upon an analysis of thermal transport in a GaN system, we
demonstrate that the cutoff function of the existing Tersoff potentials may
lead to problems in determining the thermal conductivity. To remedy this issue,
improved cutoff schemes are proposed and evaluated
A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics
We propose a new sensitivity analysis methodology for complex stochastic
dynamics based on the Relative Entropy Rate. The method becomes computationally
feasible at the stationary regime of the process and involves the calculation
of suitable observables in path space for the Relative Entropy Rate and the
corresponding Fisher Information Matrix. The stationary regime is crucial for
stochastic dynamics and here allows us to address the sensitivity analysis of
complex systems, including examples of processes with complex landscapes that
exhibit metastability, non-reversible systems from a statistical mechanics
perspective, and high-dimensional, spatially distributed models. All these
systems exhibit, typically non-gaussian stationary probability distributions,
while in the case of high-dimensionality, histograms are impossible to
construct directly. Our proposed methods bypass these challenges relying on the
direct Monte Carlo simulation of rigorously derived observables for the
Relative Entropy Rate and Fisher Information in path space rather than on the
stationary probability distribution itself. We demonstrate the capabilities of
the proposed methodology by focusing here on two classes of problems: (a)
Langevin particle systems with either reversible (gradient) or non-reversible
(non-gradient) forcing, highlighting the ability of the method to carry out
sensitivity analysis in non-equilibrium systems; and, (b) spatially extended
Kinetic Monte Carlo models, showing that the method can handle high-dimensional
problems
An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials
A fully parallel version of the contact dynamics (CD) method is presented in
this paper. For large enough systems, 100% efficiency has been demonstrated for
up to 256 processors using a hierarchical domain decomposition with dynamic
load balancing. The iterative scheme to calculate the contact forces is left
domain-wise sequential, with data exchange after each iteration step, which
ensures its stability. The number of additional iterations required for
convergence by the partially parallel updates at the domain boundaries becomes
negligible with increasing number of particles, which allows for an effective
parallelization. Compared to the sequential implementation, we found no
influence of the parallelization on simulation results.Comment: 19 pages, 15 figures, published in Journal of Computational Physics
(2011
Solute effects on edge dislocation pinning in complex alpha-Fe alloys
Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; ArgentinaFil: Martínez, E.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Monnet, G.. EDF–R&D; FranciaFil: Malerba, L.. SCK•CEN. Structural Materials Expert Group. Nuclear Materials Institute; Bélgic
Exploration of the Concept of Sonder through Dance
Megan Roberts
[email protected]
(716)713-2021
SUNY Geneseo
Dance
Professor Jonette Lancos
[email protected]
Performance Presentation
Exploration of the Concept of Sonder through Dance
Sonder is the concept that every individual that a person comes into contact with, however briefly, has a life as meaningful and as complex as that person. This piece is an exploration of the egocentrism that pervades modern society. Viewers of this dance work are urged to take a step back from their everyday lives in order to place value in the people around them. The concept for this work, entitled Sonder, stemmed from an exploration of improvisational techniques in postmodern dance. As the dance progresses and the choreography moves from traditional modern technique to exploratory improvisational structures, it is clear that the dancers step outside of themselves to acknowledge and engage with each other. Sonder shows that dance can be a medium for social commentary and can be the start of meaningful conversations among its viewers.
Keywords: dance, modern dance, postmodern dance, sonder, egocentris
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
Unilateral interactions in granular packings: A model for the anisotropy modulus
Unilateral interparticle interactions have an effect on the elastic response
of granular materials due to the opening and closing of contacts during
quasi-static shear deformations. A simplified model is presented, for which
constitutive relations can be derived. For biaxial deformations the elastic
behavior in this model involves three independent elastic moduli: bulk, shear,
and anisotropy modulus. The bulk and the shear modulus, when scaled by the
contact density, are independent of the deformation. However, the magnitude of
the anisotropy modulus is proportional to the ratio between shear and
volumetric strain. Sufficiently far from the jamming transition, when
corrections due to non-affine motion become weak, the theoretical predictions
are qualitatively in agreement with simulation results.Comment: 6 pages, 5 figure
Segue Between Favorable and Unfavorable Solvation
Solvation of small and large clusters are studied by simulation, considering
a range of solvent-solute attractive energy strengths. Over a wide range of
conditions, both for solvation in the Lennard-Jones liquid and in the SPC model
of water, it is shown that the mean solvent density varies linearly with
changes in solvent-solute adhesion or attractive energy strength. This behavior
is understood from the perspective of Weeks' theory of solvation [Ann. Rev.
Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure
- …