231 research outputs found

    Addressing Racial Disparities in Parent Training Enrollment: An Examination of Help-Seeking for Child Behavior Problems among African American Mothers

    Get PDF
    The consideration of African American mothers’ mental health help-seeking attitudes and intentionsis important when developing culturally sensitive parent training programs and potentially help bridge a critical knowledge and service gap for this population. The purpose of this study is to examine the parental help-seeking for child externalizing behavior problems in order to delineate variables that might influence BPT enrollment among African American families. To address the lack of research considering cultural factors, this study examines the influence of racial group identification, cultural childrearing values, and mental health stigmatization on African American mothers’ problem recognition and willingness to engage in behavioral parent training. Participants were 112 African American mothers. Results found that when presented with a child displaying clinically significant externalizing child behaviors, slightly more than half of African American mothers recognized clinically significant child behavior problems. Mothers were more likely to engage in behavioral parent training if problematic behavior was recognized. Additionally, mothers’ perception of child behavior, cultural values, and mental health stigmatization were influential to help-seeking. This study supports the importance of considering the cultural variables impactful to problem recognition and treatment utilization among African American families

    Treatment Acceptability and Child Discipline: The Influence of Parent Factors

    Get PDF
    The consideration of parents’ acceptance of child discipline methods is important when developing culturally sensitive parent training programs, as treatment acceptability has been associated with treatment adherence and effectiveness. Past parent training research has primarily been conducted with middle-income, Caucasian mothers. The purpose of this study is to examine parents’ acceptance of five common discipline methods often used by or recommended to parents. To address the lack of research considering parental factors, this study examines the influence of gender, race, and income on parents’ acceptability ratings. Participants were 106 mothers from heterogeneous backgrounds. Acceptability ratings were measured using the Treatment Evaluation Inventory, Short Form (Kelley, Heffer, Gresham, & Elliott, 1989). Results indicated that parents from different racial and income backgrounds differed in their ratings of treatment acceptability, particularly in terms of medication and corporal punishment. These findings are relatively consistent with past studies, but suggest an increased acceptance of corporal punishment among some parent groups. This study supports the importance of considering parents acceptance of varying discipline methods when recommending and adapting parent-training programs

    High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

    Get PDF
    Many Eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications, and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5'-complete cDNA sequencing with an integrated data analysis workflow to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive dataset that represents the first available developmental timecourse of promoter usage. We found that over 40% of developmentally expressed genes have at least 2 promoters, and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1,300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes

    SAMStat: monitoring biases in next generation sequencing data

    Get PDF
    Motivation: The sequence alignment/map format (SAM) is a commonly used format to store the alignments between millions of short reads and a reference genome. Often certain positions within the reads are inherently more likely to contain errors due to the protocols used to prepare the samples. Such biases can have adverse effects on both mapping rate and accuracy. To understand the relationship between potential protocol biases and poor mapping we wrote SAMstat, a simple C program plotting nucleotide overrepresentation and other statistics in mapped and unmapped reads in a concise html page. Collecting such statistics also makes it easy to highlight problems in the data processing and enables non-experts to track data quality over time

    H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes [version 2; peer review: 2 approved]

    Get PDF
    Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals’ chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies’ staining properties for use in epifluorescent and confocal based fluorescent microscopy

    Machine-driven parameter screen of biochemical reactions

    Get PDF
    The development of complex methods in molecular biology is a laborious, costly, iterative and often intuition-bound process where optima are sought in a multidimensional parameter space through step-by-step optimizations. The difficulty of miniaturizing reactions under the microliter volumes usually handled in multiwell plates by robots, plus the cost of the experiments, limit the number of parameters and the dynamic ranges that can be explored. Nevertheless, because of non-linearities of the response of biochemical systems to their reagent concentrations, broad dynamic ranges are necessary. Here we use a high-performance nanoliter handling platform and computer generation of liquid transfer programs to explore in quadruplicates 648 combinations of 4 parameters of a biochemical reaction, the reverse-transcription, which lead us to uncover non-linear responses, parameter interactions and novel mechanistic insights. With the increased availability of computer-driven laboratory platforms for biotechnology, our results demonstrate the feasibility and advantage of methods development based on reproducible, computer-aided exhaustive characterization of biochemical systems

    Widespread use of the “ascidian” mitochondrial genetic code in tunicates

    Get PDF
    Background:Ascidians, a tunicate class, use a mitochondrial genetic codeBackground: that is distinct from vertebrates and other invertebrates. Though it has been used to translate the coding sequences from other tunicate species on a case-by-case basis, it is has not been investigated whether this can be done systematically. This is an important because a) some tunicate mitochondrial sequences are currently translated with the invertebrate code by repositories such as NCBI GenBank, and b) uncertainties about the genetic code to use can complicate or introduce errors in phylogenetic studies based on translated mitochondrial protein sequences. Methods:We collected publicly available nucleotide sequences forMethods: non-ascidian tunicates including appendicularians such as Oikopleura dioica, translated them using the ascidian mitochondrial code, and built multiple sequence alignments covering all tunicate classes. Results:All tunicates studied here appear to translate AGR codons toResults: glycine instead of serine (invertebrates) or as a stop codon (vertebrates), as initially described in ascidians. Among Oikopleuridae, we suggest further possible changes in the use of the ATA (Ile → Met) and TGA (Trp → Arg) codons. Conclusions:We recommend using the ascidian mitochondrial code inConclusions: automatic translation pipelines of mitochondrial sequences for all tunicates. Further investigation is required for additional species-specific differences

    Multiplicity of 5' Cap Structures Present on Short RNAs

    Get PDF
    Most RNA molecules are co- or post-transcriptionally modified to alter their chemical and functional properties to assist in their ultimate biological function. Among these modifications, the addition of 5' cap structure has been found to regulate turnover and localization. Here we report a study of the cap structure of human short (<200 nt) RNAs (sRNAs), using sequencing of cDNA libraries prepared by enzymatic pretreatment of the sRNAs with cap sensitive-specificity, thin layer chromatographic (TLC) analyses of isolated cap structures and mass spectrometric analyses for validation of TLC analyses. Processed versions of snoRNAs and tRNAs sequences of less than 50 nt were observed in capped sRNA libraries, indicating additional processing and recapping of these annotated sRNAs biotypes. We report for the first time 2,7 dimethylguanosine in human sRNAs cap structures and surprisingly we find multiple type 0 cap structures (mGpppC, 7mGpppG, GpppG, GpppA, and 7mGpppA) in RNA length fractions shorter than 50 nt. Finally, we find the presence of additional uncharacterized cap structures that wait determination by the creation of needed reference compounds to be used in TLC analyses. These studies suggest the existence of novel biochemical pathways leading to the processing of primary and sRNAs and the modifications of their RNA 5' ends with a spectrum of chemical modifications

    Speed variations of bacterial replisomes

    Get PDF
    Replisomes are multi-protein complexes that replicate genomes with remarkable speed and accuracy. Despite their importance, their dynamics is poorly characterized, especially in vivo. In this paper, we present an approach to infer the replisome dynamics from the DNA abundance distribution measured in a growing bacterial population. Our method is sensitive enough to detect subtle variations of the replisome speed along the genome. As an application, we experimentally measured the DNA abundance distribution in Escherichia coli populations growing at different temperatures using deep sequencing. We find that the average replisome speed increases nearly fivefold between 17 °C and 37 °C. Further, we observe wave-like variations of the replisome speed along the genome. These variations correlate with previously observed variations of the mutation rate, suggesting a common dynamical origin. Our approach has the potential to elucidate replication dynamics in E. coli mutants and in other bacterial species
    corecore