168 research outputs found

    Finding the best efficiency for laser machining of gold colloids

    Get PDF

    Ab-initio calculation of all-optical time-resolved calorimetry of nanosized systems: Evidence of nanosecond-decoupling of electron and phonon temperatures

    Get PDF
    The thermal dynamics induced by ultrashort laser pulses in nanoscale systems, i.e. all-optical time-resolved nanocalorimetry is theoretically investigated from 300 to 1.5 K. We report ab-initio calculations describing the temperature dependence of the electron-phonon interactions for Cu nanodisks supported on Si. The electrons and phonons temperatures are found to decouple on the ns time scale at 10 K, which is two orders of magnitude in excess with respect to that found for standard low-temperature transport experiments. By accounting for the physics behind our results we suggest an alternative route for overhauling the present knowledge of the electron-phonon decoupling mechanism in nanoscale systems by replacing the mK temperature requirements of conventional experiments with experiments in the time-domain.Comment: 5 pages, 3 figures. Accepted on Physical Review B

    A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid

    Get PDF
    Pulsed-laser assisted nanoparticle synthesis in liquids (PLAL) is a versatile tool for nanoparticle synthesis. However, fundamental aspects of structure formation during PLAL are presently poorly understood. We analyse the spatio-temporal kinetics during PLAL by means of fast X-ray radiography (XR) and scanning small-angle X-ray scattering (SAXS), which permits us to probe the process on length scales from nanometers to millimeters with microsecond temporal resolution. We find that the global structural evolution, such as the dynamics of the vapor bubble can be correlated to the locus and evolution of silver nanoparticles. The bubble plays an important role in particle formation, as it confines the primary particles and redeposits them to the substrate. Agglomeration takes place for the confined particles in the second bubble. Additionally, upon the collapse of the second bubble a jet of confined material is ejected perpendicularly to the surface. We hypothesize that these kinetics influence the final particle size distribution and determine the quality of the resulting colloids, such as polydispersity and modality through the interplay between particle cloud compression and particle release into the liquid

    Singular and regular solutions of a non-linear parabolic system

    Full text link
    We study a dissipative nonlinear equation modelling certain features of the Navier-Stokes equations. We prove that the evolution of radially symmetric compactly supported initial data does not lead to singularities in dimensions n4n\leq 4. For dimensions n>4n>4 we present strong numerical evidence supporting existence of blow-up solutions. Moreover, using the same techniques we numerically confirm a conjecture of Lepin regarding existence of self-similar singular solutions to a semi-linear heat equation.Comment: 16 page

    Microscopic View on Short-Range Wetting at the Free Surface of the Binary Metallic Liquid Gallium-Bismuth: An X-ray Reflectivity and Square Gradient Theory Study

    Get PDF
    We present an x-ray reflectivity study of wetting at the free surface of the binary liquid metal gallium-bismuth (Ga-Bi) in the region where the bulk phase separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the evolution of the microscopic structure of wetting films of the Bi-rich, low-surface-tension phase along different paths in the bulk phase diagram. A balance between the surface potential preferring the Bi-rich phase and the gravitational potential which favors the Ga-rich phase at the surface pins the interface of the two demixed liquid metallic phases close to the free surface. This enables us to resolve it on an Angstrom level and to apply a mean-field, square gradient model extended by thermally activated capillary waves as dominant thermal fluctuations. The sole free parameter of the gradient model, i.e. the so-called influence parameter, κ\kappa, is determined from our measurements. Relying on a calculation of the liquid/liquid interfacial tension that makes it possible to distinguish between intrinsic and capillary wave contributions to the interfacial structure we estimate that fluctuations affect the observed short-range, complete wetting phenomena only marginally. A critical wetting transition that should be sensitive to thermal fluctuations seems to be absent in this binary metallic alloy.Comment: RevTex4, twocolumn, 15 pages, 10 figure

    Imaging the Near Field of Dielectric and Metallic Nanoparticles

    Get PDF
    Trabajo presentado en el 7th International Conference on Photo-Excited Processes and Applications , celebrado en Copenhague (Dinamarca), del 15 al 20 de agosto de 201

    The toroidal mirror for single-pulse experiments on ID09B

    Get PDF
    Abstract ID09 is a dual-purpose beamline dedicated to time-resolved and high-pressure experiments. The time-resolved experiments use a high-speed chopper to isolate single pulses of x-rays. The chopper is installed near the sample (focal spot) and the shortest usable opening time depends on the sharpness of the vertical focusing. In the 16-bunch mode, the opening window of the chopper has to be reduced to 0.300 µs to select single pulses of x-rays. This can only be achieved by lowering the height in the chopper tunnel to 0.143 mm. To ensure a reasonable transmission though the tunnel, we have built a very precise toroidal mirror that focuses the beam 22.4 m downstream in M= 0.677 geometry. The 1.0-m long silicon mirror is curved by gravity into a near perfect toroid with a meridional radius of 9.9 km. The curvature is fine-tuned by a push stepper motor that works from below. The figure error from the gravity sag and the correcting force is less than 0.3 µrad and the polishing error is 0.7 µrad (rms) over the central 450-mm part of the mirror. The measured size of the polychromatic focus is 0.100 x 0.070 mmh x mmv in agreement with the prediction from the long-trace-profiler at the ESRF. The small focus, which integrates the entire central cone of the U17 undulator, is the result of superb optical quality, fine-control of curvature, a strain-free mount, a vibration free cooling system and careful alignment
    corecore