306 research outputs found
Search for the electric dipole moment of the electron with thorium monoxide
The electric dipole moment of the electron (eEDM) is a signature of
CP-violating physics beyond the Standard Model. We describe an ongoing
experiment to measure or set improved limits to the eEDM, using a cold beam of
thorium monoxide (ThO) molecules. The metastable state in ThO
has important advantages for such an experiment. We argue that the statistical
uncertainty of an eEDM measurement could be improved by as much as 3 orders of
magnitude compared to the current experimental limit, in a first-generation
apparatus using a cold ThO beam. We describe our measurements of the state
lifetime and the production of ThO molecules in a beam, which provide crucial
data for the eEDM sensitivity estimate. ThO also has ideal properties for the
rejection of a number of known systematic errors; these properties and their
implications are described.Comment: v2: Equation (11) correcte
Neural and aneural regions generated by the use of chemical surface coatings
The disordered environment found in conventional neural cultures impedes various applications where cell directionality is a key process for functionality. Neurons are highly specialized cells known to be greatly dependent on interactions with their surroundings. Therefore, when chemical cues are incorporated on the surface material, a precise control over neuronal behavior can be achieved. Here, the behavior of SH-SY5Y neurons on a variety of self-assembled monolayers (SAMs) and polymer brushes both in isolation and combination to promote cellular spatial control was determined. APTES and BIBB coatings promoted the highest cell viability, proliferation, metabolic activity, and neuronal maturation, while low cell survival was seen on PKSPMA and PMETAC surfaces. These cell-attractive and repulsive surfaces were combined to generate a binary BIBB-PKSPMA coating, whereby cellular growth was restricted to an exclusive neural region. The utility of these coatings when precisely combined could act as a bioactive/bioinert surface resulting in a biomimetic environment where control over neuronal growth and directionality can be achieved
Mechanical Faraday effect for orbital angular momentum-carrying beams
When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±ℓ) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the order of a micro radian, but by using a slow-light medium, we show a rotation of a few degrees. We also note that, within the bounds of our experimental parameters, this rotation angle does not exceed the scale of the spatial features in the beam profile
Controlled arrangement of neuronal cells on surfaces functionalized with micro-patterned polymer brushes
Conventional in vitro cultures are useful to represent simplistic neuronal behaviour,
however the lack of organisation results in random neurite spreading. To overcome this
problem, control over the directionality of SH-SY5Y cells was attained, utilising photolithography to pattern the cell-repulsive anionic brush poly(potassium 3-sulfopropyl
methacrylate) (PKSPMA) into tracks of 20, 40, 80 and 100 µm width. This data validates the
use of PKSPMA brush coatings for long-term culture of SH-SY5Y cells, as well as providing
a methodology by which the precise deposition of PKSPMA can be utilised to achieve targeted
control over SH-SY5Y cells. Specifically, PKSPMA brush patterns prevented cell attachment,
allowing SH-SY5Y cells to grow only on the non-coated glass (gaps of 20, 50, 75 and 100 µm
width) at different cell densities (5000, 10000 and 15000 cells/cm2). This research
demonstrates the importance of achieving cell directionality in vitro, whilst these simplistic
models could provide new platforms to study complex neuron-neuron interactions
Visualization of fast-moving cells in vivo using digital holographic video microscopy
Digital in-line holography offers some significant advantages over conventional optical holography and microscopy to image biological specimens. By combining holography with digital video microscopy, an in-line holographic video microscope is developed and is capable of recording spatial 3D holographic images of biological specimens, while preserving the time dimension. The system enables high-speed video recording of fast cell movement, such as the rapid movement of blood cells in the blood stream in vivo. This capability is demonstrated with observations of fast 3-D movement of live cells in suspension cultures in response to a gentle shake to the Petri dish. The experimental and numerical procedures are incorporated with a fast reconstruction algorithm for reconstruction of holographic video frames at various planes (z axis) from the hologram and along the time axis. The current system enables both lateral and longitudinal resolutions down to a few micrometers. Postreconstruction processing of background subtraction is utilized to eliminate noise caused by scattered light, thereby enabling visualization of, for example, blood streams of live Xenopos tadpoles. The combination of digital holography and microscopy offers unique advantages for imaging of fast moving cells and other biological particles in three dimensions in vivo with high spatial and temporal resolution. © 2008 Society of Photo-Optical Instrumentation Engineers
Measurement of the electron electric dipole moment using YbF molecules
The most sensitive measurements of the electron electric dipole moment d_e
have previously been made using heavy atoms. Heavy polar molecules offer a
greater sensitivity to d_e because the interaction energy to be measured is
typically 10^3 times larger than in a heavy atom. We report the first
measurement of this kind, for which we have used the molecule YbF. Together,
the large interaction energy and the strong tensor polarizability of the
molecule make our experiment essentially free of the systematic errors that
currently limit d_e measurements in atoms. Our first result d_e = (- 0.2 \pm
3.2) x 10^-26 e.cm is less sensitive than the best atom measurement, but is
limited only by counting statistics and demonstrates the power of the method.Comment: 4 pages, 4 figures. v2. Minor corrections and clarifications made in
response to referee comment
Online patient simulation training to improve clinical reasoning: a feasibility randomised controlled trial
Online patient simulations (OPS) are a novel method for teaching clinical reasoning skills to students and could contribute to reducing diagnostic errors. However, little is known about how best to implement and evaluate OPS in medical curricula. The aim of this study was to assess the feasibility, acceptability and potential effects of eCREST — the electronic Clinical Reasoning Educational Simulation Tool
Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron
A radial magnetic field can induce a time invariance violating electric
dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms
and the neutron that are produced by such a field are estimated. The
contributions of such a field to the constants, of the T,P-odd
interactions and are also estimated for the TlF, HgF and YbF molecules (where
() is the electron (nuclear) spin and is the molecular
axis). The best limit on the contact monopole field can be obtained from the
measured value of the Tl EDM. The possibility of such a field being produced
from polarization of the vacuum of electrically charged magnetic monopoles
(dyons) by a Coulomb field is discussed, as well as the limit on these dyons.
An alternative mechanism involves chromomagnetic and chromoelectric fields in
QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why
there is no orbital contribution to the EDM has been added, and the
presentation has been improved in genera
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle
Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25–500 μL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue
- …