7 research outputs found

    Spectrophotometric Analysis of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid (ATCA)

    Get PDF
    Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations in aqueous media. This study was focused on the spectrophotometric ATCA determination in the presence of cyanide, thiocyanate (SCN−), cysteine, rhodanese, thiosulfate, and other sulfur donors. The method involves a thiazolidine ring opening in the presence of p-(hydroxy-mercuri)-benzoate, followed by the reaction with diphenylthiocarbazone (dithizone). The product is spectrophotometrically analyzed at 625 nm in carbon tetrachloride. The calibration curve was linear with a regression line of Y = 0.0022x (R2 = 0.9971). Interference of cyanide antidotes with the method was determined. Cyanide, thiosulfate, butanethiosulfonate (BTS), and rhodanese did not appreciably interfere with the analysis, but SCN− and cysteine significantly shifted the standard curve. This sensitive spectrophotometric method has shown promise as a substitute for the measurement of the less stable cyanide

    Synthesis and Storage Stability of Diisopropylfluorophosphate

    No full text
    Diisopropylfluorophosphate (DFP) is a potent acetylcholinesterase inhibitor commonly used in toxicological studies as an organophosphorus nerve agent surrogate. However, LD50 values for DFP in the same species can differ widely even within the same laboratory, possibly due to the use of degraded DFP. The objectives here were to identify an efficient synthesis route for high purity DFP and assess the storage stability of both the in-house synthesized and commercial source of DFP at the manufacturer-recommended storage temperature of 4°C, as well as −10°C and −80°C. After 393 days, the commercial DFP stored at 4°C experienced significant degradation, while only minor degradation was observed at −10°C and none was observed at −80°C. DFP prepared using the newly identified synthesis route was significantly more stable, exhibiting only minor degradation at 4°C and none at −10°C or −80°C. The major degradation product was the monoacid derivative diisopropylphosphate, formed via hydrolysis of DFP. It was also found that storing DFP in glass containers may accelerate the degradation process by generating water in situ as hydrolytically generated hydrofluoric acid attacks the silica in the glass. Based on the results here, it is recommended that DFP be stored at or below −10°C, preferably in air-tight, nonglass containers
    corecore